DESIGN CIRCULAR POLARIZATION MICROSTRIP ANTENNA FOR 2400 MHZ WITH RECTANGULAR BASIC PATCH

Rudy Yuwono, Bayu Ramadhan Hidayatullah and Erfan Achmad Dahlan
Department of Electrical Engineering, University of Brawijaya M. T. Haryono, Malang, Indonesia
E-Mail: rudy_yuwono@ub.ac.id

ABSTRACT
The antenna have many variety of types and microstrip antenna has more advantages than the other types of antenna. The antenna was made from FR-4 epoxy with substrate $\varepsilon_r = 3.9$ and $h = 1.6 \text{ mm}$ and works in frequency 2400 MHz with VSWR 1.589. S-Parameter level is below -10 dB, the bandwidth of antenna shown as VSWR < 2, has circular polarization at frequency 2400 MHz. This design and results are calculated using CST software.

Keyword: circular polarization, microstrip antenna, rectangular patch.

INTRODUCTION
Antenna has much variety of types, one of which is microstrip. Microstrip antenna has a metallic patch on a grounded substrate. The metallic patch has many configurations according to the needs [1]. Some of the advantages of microstrip antenna compared with the other types of antennas, it’s thin and small, relatively simple on manufacture, has a light weight, easy to fabricate, can generate a linear polarization and circular polarization using only the rationing that is simple, easy to integrate with other electronic devices, and the cost is relatively cheap [2].

Antenna design
The easy way to make a circular polarization in microstrip antenna is with dual feed and using a 90° phase shift between the fields [3]. For basic rectangular patch we use theoretical calculation to determine the rectangular patch.

\[W = \frac{c}{2f_0 \sqrt{\varepsilon_r}} \quad (1) \]

\[\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + \frac{12}{W} \frac{h}{W} \right] \quad (2) \]

\[L_{\text{eff}} = \frac{c}{2f_0 \varepsilon_{\text{eff}}} \quad (3) \]

\[\Delta L = 0.412 h \left(\frac{\varepsilon_{\text{eff}} + 0.3}{\varepsilon_{\text{eff}} - 0.258} \frac{W}{h} + 0.264 \right) \left(\frac{W}{h} + 0.8 \right) \quad (4) \]

\[L = L_{\text{eff}} - 2\Delta L \quad (5) \]

We find that $W = a = 39.9 \text{ mm}$, $L = b = 31.2 \text{ mm}$. The size of antenna is shown on Figure-1. The material we use is FR-4 epoxy with dielectric constant of 3.9 with 1.6 mm thick substrate.

RESULT
The observed parameters of the antenna are Return Loss (S_{11}), VSWR, Axial Ratio, and Gain. The fabricated antenna is as shown on Figure-2.
Figure-2. Fabricated antenna; (a) front view; (b) rear view.

Return loss

Return Loss which was obtained using the frequency of the antenna that can work is shown on Figure-3. S_{11} or S-Parameter also referred as return loss, and S_{11} level must be less than -10 dB and S_{11} level can be below -9.54 dB which is the maximum tolerance level of the antenna that can work [4]. For Frequency 2400 MHz the return loss is -12.861 dB as shown on Figure-3.

Figure-3. Frequency versus S_{11} parameter (return loss).

VSWR

VSWR determines bandwidth of antenna if the value of VSWR < 2. In this antenna, frequencies that have VSWR < 2 are in 1.1553 GHz – 3.178 GHz range. Figure-4 shows the value of VSWR in 2400 Mhz is 1.589 and antenna works in frequency 1.1553 GHz - 3.178 GHz, so bandwidth is 2.0227 GHz.

Gain

Gain for this antenna is 2.4791 dB for 2400 MHz which means passable.

CONCLUSIONS

This antenna with FR-4 epoxy substrate 90 mm x 70 mm, $\varepsilon_r = 3.9$, and $h = 1.6$ mm which has circular polarization in frequency of 2400 MHz. In the simulation results obtained RL < -10, VSWR < 2 at 2400 MHz, Axial ratio <3dB which means has circular polarization, gain > 2dB.

ACKNOWLEDGEMENT

The Author would like gratitude to the Ministry Research, Technology and Higher Education, Republic of Indonesia and University of Brawijaya for BOPTN 2016 Research Scheme.
REFERENCES

