
 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5623

AN EFFICIENT TEST DATA COMPRESSION BASED ON ITERATIVE
XOR MATRIX COMPUTATION

K. R. Krishnapriya and M. A. Muthiah

Department of Electronics and Communication Engineering, Sathyabama University, Tamil Nadu, India
E-Mail: krkpriya19@gmail.com

ABSTRACT

The continuous increase in complexity of system on chip (SOC) design has resulted in higher test data volume. In
this paper, we have proposed a new test data compression technique using an iterative XOR Matrix. This compression is a
lossless compression technique that reduces the amount of test data and therefore reduction in test time. Experimental
results on ISCAS 89 benchmark circuits are obtained. This demonstrates the effectiveness of the proposed technique in
obtaining high compression ratio.

Keywords: XOR matrix, system on chip (SOC), compression.

1. INTRODUCTION

The continuous and rapid advancements in VLSI
technology results in increasing complexity of system on
chip (SOC) design. The increasing integration density has
led to higher test data volume. The time required to test
and the cost of testing increases with the size of test data.
Test data compression encodes the information in fewer
bits than the original data. It involves in addition of on-
chip hardware before and after the scan chains [1]. This
approach reduces the storage and the testing time. This
approach is easier to adopt as it is compatible with the
design rules. Researchers have developed many techniques
that have improved the design’s testability through DFT
changes and improved test generation [2].

The test data compression techniques are
categorized as scan-based techniques, code-based and
linear decompression. Scan-based techniques are based on
broadcasting same values to the multiple scan chains. It
includes Broadcast scan for independent scan chains,
Illinois scan for dependent scan chains. In Illinois Scan
Architecture (ILS), the output of scan chains were
compressed to multiple input signature analyzer [8]. In
code-based technique the data compression codes are used
to encode test cubes. The original data is partitioned into
symbols and then they are replaced with code word to
form the compressed data [4]. The Dictionary based
methods are classified into two: Static dictionary and
dynamic dictionary. LZ77 is a well-known compression
algorithm that is based on Dynamic dictionary [9].
Multiple dictionaries are used in [16] to reduce the number
of bits to indicate the dictionary index. In [6], Run length
based codes such as FDR and AVR are compared. In
Linear decompression, linear operations are used. The
linear decompression can be of two types: Combinational
continuous-flow linear decompressors and Sequential
continuous-flow linear decompressors [7]. LFSR
reseeding decompression is used in [20] is used to
eliminate the pattern lockout in linear decompression. In
[19], linear compression was performed using Viterbi
algorithm instead of solving linear equations. All these
data compression techniques are lossless compression
techniques. Application of lossless compression on test

data reduces storage and test time. Most of the methods
utilize Golomb code, Huffman codes, Run length coding,
Arithmetic codes, and Lempel-Ziv algorithms which are
lossless data compression [3]. Arithmetic coding is widely
used as an efficient encoding in image compression [14].
The test vector is divided into blocks and block matching
algorithm is used in [12] to find and re arrange the blocks
of test vector. In [13], block merging compression
technique is used. In this method, consecutive compatible
blocks are merged.

Huffman coding is a most widely used
compression method which is a statistical encoding
method. Huffman code is generated by a binary tree
named Huffman Tree [10]. The Huffman coding is
modified to Selective Huffman [11], Complementary
Huffman [17] and Multilevel Huffman [18].

In this paper, we propose an effective and a novel
method for test data compression based on Iterative XOR
Matrix. The main idea behind this method is to perform
effective data compression to the requirement of the tester
using the functionality of XOR gate.

2. PROPOSED COMPRESSION TECHNIQUE

The proposed test data compression technique is
based on using XOR gates in an iterative fashion at
consecutive levels.

The basic functionalities and characteristics of
XOR gate is the base of this design. Let us consider two
binary input data A and B. Let A XOR B = C, we can find
C if A and B are known. If anyone input is unknown and
the output is available, we can get the other input. This
property is exploited in the proposed test data
compression.

The input vector is spitted into blocks (either
eight bit or 16 bit blocks) based on the design. The number
of blocks = N. This is considered as first level. To obtain
the second level, the first two blocks of level one are
XORed and the output is the first block of level two. Then
this block of level two is XORed with block three of level
one to get second block of level two. Thus continuing this
operation till reaching the last block of level one will
generate block two. The number of blocks in level two =

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5624

N-1. Continuing the same for consecutive levels, the
numbers of blocks are compressed.

In Figure-1, we show a simple example of the
iterative XOR Matrix logic. Let B1, B2, B3, B4, B5, B6,
B7, and B8 be eight blocks of input each of eight bits. The
iterative XOR Matrix is computed for N-N/2 levels to
reduce the blocks into half of the original size. The
resultant is of four blocks. In this example, number of
blocks (N) = 8. Number of levels in which iterations are
performed = 4. Thus we get the blocks reduced into 50%
of the original size.

Figure-1. Iterative XOR matrix.

Let us see the encoding and decoding process
using this technique in the next section.

3. ENCODING AND DECODING USING THE
 PROPOSED TECHNIQUE

In this section, we present the design of the Data
compression Encoder and its working. The encoder is
composed of eight main components. Let us see the test
data flow and the functionality of each component.

The following steps provide the encoding
process:
Step 1. Don’t care Assignment
Step 2. Vector Length Counter
Step 3. Zero padding
Step 4. Generation of Blocks
Step 5. Iterative XOR Matrix Computation
Step 6. Block Merging

Step 1: Don’t care assignment

In this step, the don’t care bits of the test vector
are identified and they are assigned with 0’s. Assignment
can be done with 1’s also, but it should be uniform and
make in generalized throughout the design.

Step 2: Vector length counter
In this step, the length of the test vector is

determined. It is helpful in generating the data blocks.

Step 3: Zero padding

Based on the vector length obtained in step 2, the
zero padding is performed in this step. The encoder is
designed for 16 bits block. Therefore if the vector length is
not divisible by 16, zeros are added in MSB accordingly to
make it divisible by 16.

Step 4: Generation of blocks

In this step, the input test vector is divided into
blocks with each 16 bits as length.

Step 5: Iterative XOR matrix computation

In this step, the iterative XOR matrix
computation is performed on the input blocks for the
required number of levels as per the design. As per the
design we aim for 75% data compression.
Let the number of input blocks = K.

Then, the number of output blocks = K – 0.75K
The number of iterations = # input blocks - # output
blocks.

Step 6: Block merging

In this step, the generated output blocks are
merged together. This is the compressed test data vector
obtained by the Iterative XOR Matrix Computation. In
Figure-2, the flowchart illustrates the encoding process
stepwise.

Figure-2. Schematic diagram of the proposed technique.

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5625

Let us see the functionality of each component of
the Encoder design. The main eight components of the
encoder design are: Don’t care assigner, Vector length
counter, Padding Unit, Padding count storage, Vector
Divider, 16-bit stack, Matrix computation Unit, Block
Merger.

The Figure-3 shows the Encoder design with its
components. The architecture is for 16 bits block design.
The same can be implemented for 8 bits block design also.
The original input vector contains don’t care bits.
Compression ratio depend on how the don’t care bits are
assigned [15]. 0-fill, 1-fill, minimum-transition-fill and
random-fill are some of the popular don’t-care bit filling
techniques [5]. The original input test vector is provided to
the don’t care assigner. In this design 0-fill is used. Thus
the don’t care bits are replaced with 0’s. This modified
data is given to the Vector length counter to obtain the
count of the input.

Figure-3. An overview of the proposed method.

If the count is not exactly divisible by 16, it is
sent to the Padding Unit. In padding unit, zeros are added

to the input such that the count of the vector is rounded to
nearest value divisible by 16. The number of zeros padded
are stored in the Padding count Unit. This is very
important as it plays an important role in decoding. Once
the vector length is exactly divisible by 16, the vector is
divided into blocks as given in step 4. Therefore let the
number of blocks = K. This input blocks are considered as
Level 1. The value of first block of level 1 is stored in the
16 bit Stack. Then the XOR Matrix computation is
performed on level 1 as given in Section II.

The Iterative XOR Matrix computation is
performed till the designed level of compression is
obtained. The number of iterations and the levels are
determined as given in Step 5. The output blocks obtained
are given to the Block Merger. The Blocks are merged and
the compressed output vector is obtained in this unit. Thus
the output compressed vector is with the compression ratio
of 75%.

During decoding, the reverse of the encoding is
performed to get the original test vector. The output vector
is divided into blocks such that it contains 16 bits each.
The previous level is obtained using the XOR operation
again. The first block of the previous level is obtained
from the 16 bit Stack. On performing the iterative XOR
Matrix in the reverse direction the first level of blocks (K)
are obtained. Then the padded zeros can be removed
referring the padding count unit. Thus the original vector
can be decoded.

4. EXPERIMENTAL RESULTS

Experiments were done on ISCAS89 benchmark
circuits to measure the effectiveness of the proposed test
data compression technique. Experimental results are
presented in Table-1. The results are given for both block
size 8 and 16. As the block size increases the number of
iterations gets reduced.

Compression ratio is determined by the following
formula:
Compression ratio = [(# original bits - # compressed bits)/
original bits]* 100

Table-1. Experimental results of the proposed technique.

ISCAS 89
Benchmark

circuit

Original test
vector length

(Number of bits)

Block size = 8 Block size = 16

Compressed test
vector length

(Number of bits)

Compression
ratio

Compressed test
vector length

(Number of bits)

Compression
ratio

S5378 214 48 77.77 48 78.57

S9234 247 56 77.41 64 75.00

S13207 700 176 75.00 176 75.00

S15850 611 152 75.32 144 76.92

5. CONCLUSIONS

In this paper, an effective technique for achieving
higher compression ratio has been presented. According to
the experimental results, this technique achieves higher
compression than existing methods. This is effective

regardless of the input data. It is dependent on the vector
count.

Thus the compression ratio obtained is well
predictable. As the block size decreases the computations
increase. Depending on the requirement, the block size can

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5626

be selected. This flexibility in selecting the block size is an
important advantage of the method.

REFERENCES

[1] N.A. Touba. 2006. Survey of Test Vector

Compression Techniques. IEEE Design and Test of
Computers. pp. 294-303.

[2] P.Girard. 2002. Survey of Low-Power Testing of
VLSI Circuits. IEEE Design and Test of Computers.
pp. 82-92.

[3] S. Zahir, A. El-Maleh and E.Khan. 2001. An Efficient
Test Vector Compression Technique Based on
Geometric Shapes. IEEE. pp. 1561-1564.

[4] Usha Mehta, K.S.Dasgupta and N.M. Devashrayee.
2009. Survey of Test Data Compression Techniques
Emphasizing Code Based Schemes. Proc. of 12th
Euromicro Conference on Digital System Design /
Architectures, Methods and Tools, IEEE Computer
Society. pp. 617-620.

[5] R.Karmakar and S. Chattopadhyay. 2015. Thermal-
Aware Test Data Compression Using Dictionary
Based Coding. Proc. of 28th International Conference
on VLSI Design and 14th International Conference on
Embedded Systems, IEEE Computer Society. pp. 53-
58.

[6] B.YE and M.LUO. 2010. A New Test Data
Compression Method for System-on-a-Chip. pp. 129-
133.

[7] K.J. Balakrishnan and N.A. Touba. 2006. Improving
Linear Test Data Compression. Proc. of IEEE
Transactions on Very large Scale Integration (VLSI)
SYSTEMS. 14(11): 1227-1237.

[8] A.R. Pandey and J.H. Patel. 2002. Reconfiguration
Technique for Reducing Test Time and Test Data
Volume in Illinois Scan Architecture Based Designs.
Proc. of the 20th IEEE VLSI Test Symposium
(VTS02), IEEE Computer Society.

[9] L. Li and K. Chakrabarty. 2003. Test Data
Compression Using Dictionaries with Fixed-Length
Indices. Proceedings of the 21st IEEE VLSI Test
Symposium (VTS03), IEEE Computer Society.

[10] V. Iyengar, K. Chakrabarty and B.T. Murray. 1998.
Huffman Encoding of Test Sets for Sequential
Circuits. IEEE Transactions on Instrumentation and
Measurement. 47(1): 21-25.

[11] P. Dipu, B. Harshavardhan, E. Venkata Ramesh and
M. Aarthy. 2014. A Comparitive Study of
Compression Decompression Scheme Using Huffman
and Selective Huffman Techniques. Proc. of
International Conference on Circuit, Power and
Computing Technologies [ICCPCT], pp. 1317-1320,
2014.

[12] S.N. Biswas, S.R. Das and E.M. Petriu. 2014. On
System-on-Chip Testing Using Hybrid Test Vector
Compression. IEEE Transactions on Instrumentation
and Measurement. 63(11):2611-2619.

[13] A. El-Maleh. 2006. An Efficient Test Vector
Compression Technique Based on Block Merging.
ISCAS 2006. pp. 1447-1450.

[14] A. Masmoudi W. Puech. 2014. An Efficient Adaptive
Arithmetic Coding for Block-based Lossless Image
Compression using Mixture Models. ICIP. pp. 5646-
5650.

[15] L. Jiyehi, F. Jianhua, Z. Lida, X. Wenhua and W.
Xinan. 2005. A New Test Data
Compression/Decompression Scheme to Reduce SOC
Test Time. IEEE. pp. 653-656.

[16] V. Janfaza, P. Behnam, B. Forouzandeh and B.
Alizadeh. 2014. A Low-power Enhanced Bitmask-
dictionary Scheme for Test Data Compression. Proc.
of IEEE Computer Society Annual Symposium on
VLSI. pp. 220-225.

[17] S.K Lu, H.M. Chuang, G.Y. Lai, B. T.Lai and Y.C.
Huang. 2009. Efficient Test Pattern Compression
Techniques Based on Complementary Huffman
Coding. IEEE.

[18] X. Kavousianos, E. Kalligeros and D. Nikolos. 2008.
Multilevel-Huffman Test-Data Compression for IP
Cores with Multiple Scan Chains. Proc. of IEEE
Transactions on Very large Scale Integration (VLSI)
SYSTEMS. 16(7): 926-931.

[19] D. Lee and K. Roy. 2012. Viterbi-Based Efficient
Test Data Compression. Proc. of IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems. 31(4): 610-619.

[20] O. Novak, J. Jenicek and M. Rozkovec. 2014. Test-
Data Compression with Low Number of Channels and
Short Test Time. pp. 104-109.

