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ABSTRACT 

The continuous increase in complexity of system on chip (SOC) design has resulted in higher test data volume. In 
this paper, we have proposed a new test data compression technique using an iterative XOR Matrix. This compression is a 
lossless compression technique that reduces the amount of test data and therefore reduction in test time. Experimental 
results on ISCAS 89 benchmark circuits are obtained. This demonstrates the effectiveness of the proposed technique in 
obtaining high compression ratio. 
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1. INTRODUCTION 

The continuous and rapid advancements in VLSI 
technology results in increasing complexity of system on 
chip (SOC) design.  The increasing integration density has 
led to higher test data volume. The time required to test 
and the cost of testing increases with the size of test data. 
Test data compression encodes the information in fewer 
bits than the original data. It involves in addition of on-
chip hardware before and after the scan chains [1]. This 
approach reduces the storage and the testing time. This 
approach is easier to adopt as it is compatible with the 
design rules. Researchers have developed many techniques 
that have improved the design’s testability through DFT 
changes and improved test generation [2]. 

The test data compression techniques are 
categorized as scan-based techniques, code-based and 
linear decompression. Scan-based techniques are based on 
broadcasting same values to the multiple scan chains. It 
includes Broadcast scan for independent scan chains, 
Illinois scan for dependent scan chains. In Illinois Scan 
Architecture (ILS), the output of scan chains were 
compressed to multiple input signature analyzer [8].  In 
code-based technique the data compression codes are used 
to encode test cubes. The original data is partitioned into 
symbols and then they are replaced with code word to 
form the compressed data [4]. The Dictionary based 
methods are classified into two: Static dictionary and 
dynamic dictionary. LZ77 is a well-known compression 
algorithm that is based on Dynamic dictionary [9].  
Multiple dictionaries are used in [16] to reduce the number 
of bits to indicate the dictionary index. In [6], Run length 
based codes such as FDR and AVR are compared. In 
Linear decompression, linear operations are used. The 
linear decompression can be of two types: Combinational 
continuous-flow linear decompressors and Sequential 
continuous-flow linear decompressors [7]. LFSR 
reseeding decompression is used in [20] is used to 
eliminate the pattern lockout in linear decompression. In 
[19], linear compression was performed using Viterbi 
algorithm instead of solving linear equations. All these 
data compression techniques are lossless compression 
techniques. Application of lossless compression on test 

data reduces storage and test time. Most of the methods 
utilize Golomb code, Huffman codes, Run length coding, 
Arithmetic codes, and Lempel-Ziv algorithms which are 
lossless data compression [3]. Arithmetic coding is widely 
used as an efficient encoding in image compression [14]. 
The test vector is divided into blocks and block matching 
algorithm is used in [12] to find and re arrange the blocks 
of test vector. In [13], block merging compression 
technique is used. In this method, consecutive compatible 
blocks are merged. 

Huffman coding is a most widely used 
compression method which is a statistical encoding 
method. Huffman code is generated by a binary tree 
named Huffman Tree [10]. The Huffman coding is 
modified to Selective Huffman [11], Complementary 
Huffman [17] and Multilevel Huffman [18].  

In this paper, we propose an effective and a novel 
method for test data compression based on Iterative XOR 
Matrix. The main idea behind this method is to perform 
effective data compression to the requirement of the tester 
using the functionality of XOR gate. 
 
2. PROPOSED COMPRESSION TECHNIQUE 

The proposed test data compression technique is 
based on using XOR gates in an iterative fashion at 
consecutive levels. 

The basic functionalities and characteristics of 
XOR gate is the base of this design. Let us consider two 
binary input data A and B. Let A XOR B = C, we can find 
C if A and B are known. If anyone input is unknown and 
the output is available, we can get the other input. This 
property is exploited in the proposed test data 
compression.  

The input vector is spitted into blocks (either 
eight bit or 16 bit blocks) based on the design. The number 
of blocks = N. This is considered as first level. To obtain 
the second level, the first two blocks of level one are 
XORed and the output is the first block of level two. Then 
this block of level two is XORed with block three of level 
one to get second block of level two. Thus continuing this 
operation till reaching the last block of level one will 
generate block two. The number of blocks in level two = 
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N-1. Continuing the same for consecutive levels, the 
numbers of blocks are compressed. 

In Figure-1, we show a simple example of the 
iterative XOR Matrix logic. Let B1, B2, B3, B4, B5, B6, 
B7, and B8 be eight blocks of input each of eight bits. The 
iterative XOR Matrix is computed for N-N/2 levels to 
reduce the blocks into half of the original size. The 
resultant is of four blocks. In this example, number of 
blocks (N) = 8. Number of levels in which iterations are 
performed = 4. Thus we get the blocks reduced into 50% 
of the original size. 
 

 
 

Figure-1. Iterative XOR matrix. 
 

Let us see the encoding and decoding process 
using this technique in the next section. 
 
3. ENCODING AND DECODING USING THE  
    PROPOSED TECHNIQUE 

In this section, we present the design of the Data 
compression Encoder and its working. The encoder is 
composed of eight main components. Let us see the test 
data flow and the functionality of each component.  
 

The following steps provide the encoding 
process: 
Step 1.  Don’t care Assignment 
Step 2.  Vector Length Counter 
Step 3.  Zero padding 
Step 4.  Generation of Blocks 
Step 5.  Iterative XOR Matrix Computation 
Step 6.  Block Merging 
 
Step 1: Don’t care assignment 

In this step, the don’t care bits of the test vector 
are identified and they are assigned with 0’s. Assignment 
can be done with 1’s also, but it should be uniform and 
make in generalized throughout the design. 
 
 

Step 2: Vector length counter 
In this step, the length of the test vector is 

determined. It is helpful in generating the data blocks. 
 
Step 3: Zero padding 

Based on the vector length obtained in step 2, the 
zero padding is performed in this step. The encoder is 
designed for 16 bits block. Therefore if the vector length is 
not divisible by 16, zeros are added in MSB accordingly to 
make it divisible by 16. 
 
Step 4: Generation of blocks 

In this step, the input test vector is divided into 
blocks with each 16 bits as length. 
 
Step 5: Iterative XOR matrix computation 

In this step, the iterative XOR matrix 
computation is performed on the input blocks for the 
required number of levels as per the design. As per the 
design we aim for 75% data compression. 
Let the number of input blocks = K. 

Then, the number of output blocks = K – 0.75K 
The number of iterations = # input blocks - # output 
blocks. 
 
Step 6: Block merging 

In this step, the generated output blocks are 
merged together. This is the compressed test data vector 
obtained by the Iterative XOR Matrix Computation. In 
Figure-2, the flowchart illustrates the encoding process 
stepwise. 
 

 
 

Figure-2. Schematic diagram of the proposed technique. 
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Let us see the functionality of each component of 
the Encoder design. The main eight components of the 
encoder design are: Don’t care assigner, Vector length 
counter, Padding Unit, Padding count storage, Vector 
Divider, 16-bit stack, Matrix computation Unit, Block 
Merger.  

The Figure-3 shows the Encoder design with its 
components. The architecture is for 16 bits block design. 
The same can be implemented for 8 bits block design also. 
The original input vector contains don’t care bits. 
Compression ratio depend on how the don’t care bits are 
assigned [15]. 0-fill, 1-fill, minimum-transition-fill and 
random-fill are some of the popular don’t-care bit filling 
techniques [5]. The original input test vector is provided to 
the don’t care assigner. In this design 0-fill is used. Thus 
the don’t care bits are replaced with 0’s. This modified 
data is given to the Vector length counter to obtain the 
count of the input.  
 

 
 

Figure-3. An overview of the proposed method. 
 

If the count is not exactly divisible by 16, it is 
sent to the Padding Unit. In padding unit, zeros are added 

to the input such that the count of the vector is rounded to 
nearest value divisible by 16. The number of zeros padded 
are stored in the Padding count Unit. This is very 
important as it plays an important role in decoding. Once 
the vector length is exactly divisible by 16, the vector is 
divided into blocks as given in step 4. Therefore let the 
number of blocks = K. This input blocks are considered as 
Level 1. The value of first block of level 1 is stored in the 
16 bit Stack. Then the XOR Matrix computation is 
performed on level 1 as given in Section II. 

The Iterative XOR Matrix computation is 
performed till the designed level of compression is 
obtained. The number of iterations and the levels are 
determined as given in Step 5. The output blocks obtained 
are given to the Block Merger. The Blocks are merged and 
the compressed output vector is obtained in this unit. Thus 
the output compressed vector is with the compression ratio 
of 75%. 

During decoding, the reverse of the encoding is 
performed to get the original test vector. The output vector 
is divided into blocks such that it contains 16 bits each. 
The previous level is obtained using the XOR operation 
again. The first block of the previous level is obtained 
from the 16 bit Stack. On performing the iterative XOR 
Matrix in the reverse direction the first level of blocks (K) 
are obtained. Then the padded zeros can be removed 
referring the padding count unit. Thus the original vector 
can be decoded.  
 
4. EXPERIMENTAL RESULTS 

Experiments were done on ISCAS89 benchmark 
circuits to measure the effectiveness of the proposed test 
data compression technique. Experimental results are 
presented in Table-1. The results are given for both block 
size 8 and 16. As the block size increases the number of 
iterations gets reduced. 

Compression ratio is determined by the following 
formula: 
Compression ratio = [(# original bits - # compressed bits)/ 
# original bits]* 100

 
Table-1. Experimental results of the proposed technique. 

 

ISCAS 89 
Benchmark 

circuit 

Original test 
vector length 

(Number of bits) 

Block size = 8 Block size = 16 

Compressed test 
vector length 

( Number of bits) 

Compression 
ratio 

 

Compressed test 
vector length 

(Number of bits) 

Compression 
ratio 

S5378 214 48 77.77 48 78.57 

S9234 247 56 77.41 64 75.00 

S13207 700 176 75.00 176 75.00 

S15850 611 152 75.32 144 76.92 

 
5. CONCLUSIONS 

In this paper, an effective technique for achieving 
higher compression ratio has been presented. According to 
the experimental results, this technique achieves higher 
compression than existing methods. This is effective 

regardless of the input data. It is dependent on the vector 
count.  

Thus the compression ratio obtained is well 
predictable. As the block size decreases the computations 
increase. Depending on the requirement, the block size can 
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be selected. This flexibility in selecting the block size is an 
important advantage of the method. 
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