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ABSTRACT 

This paper aims to develop a new technique for the classification of various power quality disturbances using 

Kalman filter and Multi-layer perceptron (MLP) neural network. Kalman filter is adopted to extract the three types of input 

features (standard deviation, peak value and variances) from the power quality disturbance waveforms simulated on a 

Matlab test system. The extracted features are given as inputs to the neural network.MLP based neural network has been 

used for disturbance classification and the neural network has been trained using 1800 number of test data at the rate of 200 

samples for each class of disturbance. The algorithm has been tested with 1800 number of test data and the outcomes are 

recorded. 

 
Keywords: power quality, power quality disturbances, kalmanfilter, neural network, MLPbased neural network. 

 

Nomenclature �௔,௕- Continuous wavelet transform a & b - Dilation and translation parameter 

Ψ(t) - Mother wavelet ݔ� - State vector  ݕ�  – Voltage sinusoid  ݖ� - Measurement at the time instant �� �� - State transition matrix ܪ� - Measurement matrix ݒ&�ݓ� - Model and measurement errors 

ω - Fundamental angular frequency ��,�&��- Amplitude and phase angle of the ��ℎ harmonic attime �� ∆� - Sampling interval ܴ� - Covariance matrix of ݒ� ��- Kalman gain �ܲ−- Prior process covariance  ܳ�- Covariance matrix of ݓ�  �ܲ- Error covariance 

 

1. INTRODUCTION 

Over the past few years, a wide range of power 

quality detection and classification tools were developed. 

Normally electric power quality disturbances are classified 

as sag, swell, interruption, harmonics, sag with harmonics, 

swell with harmonics, notches and flickers and these are 

created by power line disturbances and such other factors. 

Hence it is necessary to detect and localize these 

disturbances and further identify the types of disturbances. 

Various types of power quality disturbances were detected 

and classified using wavelet transform analysis as 

illustrated in [1]. Analysis of electromagnetic power 

system transient waveform using wavelet transform has 

been illustrated in [2].The data processing burden of the 

classification algorithm has been considerably reduced by 

compressing the signals through wavelet transform 

methods as illustrated in [3].  

Classification of power quality events using a 

combination of SVM and RBF networks has been 

presented in [4]. The windowed FFT which is the time 

windowed version of discrete Fourier transform has been 

applied for power quality analysis to classify a variety of 

disturbances in [5]. A combination of Fourier and wavelet 

transform along with fuzzy expert system has been 

presented in [6] for the automatic monitoring and analysis 

of power quality disturbances. Wavelet multi resolution 

analysis based neural network classifier is presented in [7] 

for the detection and extraction of power quality 

disturbances. Automated online power quality 

disturbances classification using wavelet based pattern 

recognition technique has been illustrated in [8]. 

As wavelet transforms cannot be applied for the 

analysis of non stationary signals, S-transforms were 

implemented due to their excellent frequency resolution 

characteristics. Application of S-transform for power 

quality analysis has been discussed in [9]. S-transform 

based neural network classifier is presented in [10] where 

the analysis of the non stationary signals in the power 

system has been carried out. A fuzzy logic based pattern 

recognition system along with multi resolution S-

transform for power quality event classification has been 

discussed in [11]. A combination of wavelet transform 
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along with both ANN and fuzzy logic classifier has been 

implemented for the PQ events classification in [12]. 

The binary feature matrix of the system has been 

designed using Fourier and S-transform and a rule base 

has been formulated to classify the power quality events in 

[13].Probabilistic neural network method based on optimal 

feature selection for power quality event classification has 

been illustrated in [14].A representative quality power 

vector has been derived for power quality analysis through 

an adaptive neuro fuzzy interface system in [15].A rule 

based system in which power quality event generation and 

signal capturing were implemented in the hardware and 

classification has been implemented through an expert 

system has been presented in [16]. A real time 

classification method for the power quality disturbances 

based on RMS values of the waveforms and DWT has 

been discussed in [17]. 

A combination of linear Kalman filter and fuzzy 

expert system has been used for the analysis of power 

quality events in [18] wherein the signal noise is estimated 

using a block of DWT. Classification of power quality 

disturbances using a combination of Hilbert huang 

transform (HHT) and Relevance vector machine (RVM) 

has been presented in [19].The detection and classification 

of single and combined power quality disturbances are 

based on signal spare decomposition (SSD) on 

overcomplete hybrid dictionary (OHD) matrix in [20].A 

Kalman filter-neural network based power quality 

analyzer in which features are extracted using Kalman 

Filter and disturbances are classified using an MLP based 

neural network is presented in this paper. 

 

2. PROPOSED METHOD 

The proposed method has two main stages 

namely feature extraction stage and classification stage. In 

the feature extraction stage, Kalman Filter is used for 

extracting the input features such as standard deviation, 

peak value and variances. The classification stage consists 

of a MLP based neural network with four hidden layers. 

Disturbance waveforms were generated using Matlab 

simulation of the test system. 

 

2.1 Feature extraction stage using Kalman filter 

 Kalman filter has been used for the purpose of the 

input feature extraction. Kalman filter is characterized by a 

set of dynamic state equations and measurement 

equations, given a set of observed data, as illustrated 

below. 

 ��+ଵ= ��ݓ+�ݔ�                                                                          (1) 

�ݒ+�ݔ�ܪ = �ݖ                                 (2) 

 

In order to obtain a satisfactory performance of 

Kalman filter, it is necessary to know both the dynamic 

process and the measurement model. In the power system, 

the measured signal can be expressed by a sum of 

sinusoidal waveforms and the noise. Let an observed 

signal ݖ� at time�� be the sum ofݕ�  andݒ�, which 

represents M sinusoids and the additive noise for sampling 

points. Then 

�ݒ+�ݕ =�ݖ                                 (3) 

∑=�ݖ   ��,�sin ሺሺ��݇ሻ�ܶ +��=ଵ ��,�ሻ + �ݒ                            (4) 

 

where݇= 1,2,3……� . 

Each frequency component requires two state 

variables and hence the total number of state variables is 

2n. At any time k, these state variables are defined as 

 

For 1
st
 harmonics:  ݔଵ = �ଵcosሺ�ଵሻݔଵ = �ଵsinሺ�ଵሻ 

For 2
nd

 harmonics: ݔଶ = �ଶcosሺ�ଶሻݔଶ = �ଵsinሺ�ଶሻ            (5) 

·  ·  ·  · ·  ·  ·  ·  ·  

For n
th

 harmonics: ݔଶ�−ଵ = ��cosሺθnሻxଶn−ଵ = Ansinሺ��ሻ 

The above set of equations can be written in 

matrix form as, 
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The measurement equation can be similarly 

expressed in matrix form as 

 

=�ݒ+�ݔ�ܪ = �ݖ
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The system covariance matrices for ݓ� and ݒ�can 

be written as  

E[ݓ�ݓ��] = [ܴ�] and E[ݒ�ݒ��] = [ܳ�] 

 

The Kalman Filter execution procedure is a 

recursive one, with steps for time and measurement 

updates as listed as below.  

Time update 

 

1) Project the state ahead ��+ଵ−      �ݔ��=

     

2) Project the error covariance ahead                            (8)                  
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�ܲ+ଵ− =�� �ܲ��� +  �ݒ

Measurement update 

1) Compute the Kalman gain �� = �ܪሺ��ܪ−ܲ� ��ܪ−ܲ� + ܴ�ሻ−ଵ
 

Update estimate with measurement ݔ� = −�ݔ + ��ሺݖ� −  (9)                                                   −�ݔሻ�ܪ

2) Update the error covariance   

 �ܲ = ሺܫ − ሻ�ܪ�� �ܲ− 

 

Time and measurement update equations (8) and 

(9) are alternatively solved. After each time and 

measurement update pair, the process is repeated using the 

previous posterior estimates to project the new a prior 

estimates. At any given instant k, the amplitudes of the 

fundamental and harmonic frequencies are computed from 

estimated variables as 

 

��,� = √�ଵ.�ଶ + �ଶ,�ଶ
                  (10) 

 ��,� = √�ଶ�−ଵ.�ଶ + �ଶ,��ଶ � =  ͳ,ʹ, … … … … . ݊                         (11) 

 

Slope of the signals, ݈ܵ݌݋�,� = ሺ��,� − ��,�−ଵሻ �ܶ⁄   (12) 

 

2.2 Multi-Layer Perceptron (MLP) neural network 

A multilayer perceptron neural network is a feed-

forward artificial neural network that has an input layer, 

output layer and one or more hidden layers. A MLP based 

neural network consists of multiple layers of nodes in 

which each layer connected to the next one fully in a 

directed graph. Except for the input nodes, each node is a 

neuron with a nonlinear activation function. MLP based 

neural network utilizes a supervised learning technique 

called back propagation for training the network.MLP 

based neural network architecture diagram is shown as in 

the Figure-1. The training parameters of the MLP used in 

this work are shown in Table-1. 

 

 
 

Figure-1. Architecture of MLP neural network. 

 

Table-1. MLP architecture and training parameters. 
 

Architecture  

The number of layers 3 

The number of neuron on the layers Input: 13, hidden: 10, output: 9 

The initial weights and biases Random 

Activation functions Tangent sigmoid 

Training parameters  

Learning rule Back-propagation 

Learning rate 0.75 

Mean-squared error 1E-08 

 

 

 

 

Back propagation learning algorithm 

BP has two phases: 



                               VOL. 11, NO. 9, MAY 2016                                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

                                                                                                                                                      5679 

 Forward pass phase: Calculates the ‘functional 
signal’ and propagates input pattern signals through 

network in the forward direction. 

 Backward pass phase: Calculates the ‘error signal’ 
and propagates the error backwards through network 

starting at output units (the difference between actual 

and desired output values). 

 The back-propagation network has an input layer, 

an output layer, and atleast one hidden layer. There is no 

limit on the number of hidden layers but typically there is 

just one or two. But in some case, a minimum of four 

layers (three hidden layers plus an output layer) are used 

to solve complex problems. Each layer is fully connected 

to the succeeding layer.  

Recall is the process of setting input data into a 

trained network and receiving the answer. Back-

propagation is not used during recall, but only when the 

network is learning a training set. 

 

3. CLASSIFICATION STAGE 

In order to classify the power quality 

disturbances, the extracted features through Kalman filter 

namely standard deviation, peak value and the variances 

are applied as inputs to the multi-layer perception based 

neural network.MLP networks are very useful for the 

classification of those input signals which cannot be 

defined mathematically.  

 

3.1 Flowchart of the proposed method 

 The flowchart for the Classification of Power 

Quality disturbances is shown in below.  

It has three different blocks.  

 

 Block-1 - Extraction of the features  

 Block-2 Classification of the power quality 

disturbances and  

 Block-3 Identification of the disturbances 

 
 

Figure-2. Flowchart for the classification of power quality 

disturbances. 

 

4. SIMULATION AND TEST RESULTS 

Training and Test data were generated using 

Matlab Simulink on the test system for various classes of 

disturbances and this method of data generation offers the 

advantages such as a wide range of parameters can be 

generated in a controlled manner, signals closer to real 

situation can be simulated. The single line diagram for the 

test system and the Matlab simulation block diagram are 

shown in Figure-3 and Figure-4. 
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Figure-3. Single line diagram of test system model. 

 

 
 

Figure-4. Matlab simulation block diagram for the test system model. 

 

Nine classes of different PQ disturbances, namely 

pure sine (normal), sag, swell, surge, outage, harmonics, 

sag with harmonic, swell with harmonic, notch and flicker 

were considered. Total size of the training data set is 

3*1800, where 3 represents the number of features 

extracted for each type of disturbance and 1800 represents 

the total number of samples at the rate of 200 samples for 

each one of the 9 disturbances.  

In the following case studies, the analysis and 

classifications of power quality disturbances are presented. 

 

Pure sine wave is a normal voltage signal of 

amplitude 1 V at the frequency 50 Hzand its waveform is 

as shown in the Figure-5(a).The standard deviation, peak 

value and variance outputs of the kalman filter are shown 

in the Figures 5(b), 5(c) and 5(d). 
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                                                                                    Figure-5(a).                                                                           Figure-5(b). 

 

 
 

                                      Figure-5(c).                                                                            Figure-5(d). 
 

Voltage sag (or) voltage dips cause a decrease of 

10-90% in system voltage. The duration of the sag 

disturbance is 0.2 to 0.4 cycles in 1 min. It is generated by 

the occurrence of a single line to ground fault for 10 

cycles. The voltage dip waveform is shown in the figure 

6(a). The three input features extracted using kalman filter 

from the disturbance signal are shown in the figures 6(b), 

6(c) and 6(d). 

 

 
 

                                         Figure-6(a).                                                                   Figure-6(b). 

 

 
 

                                         Figure-6(c).                                                                               Figure-6(d). 

 

Voltage swell causes the rise of 10-90% of the 

system voltage. It is generated by disconnecting the heavy 

load for 10 cycles. The duration of the swell disturbance is 

0.2 to 0.4 cycles in 1 min. The voltage swell waveform is 

shown in the Figure-7(a) and their corresponding features 

extracted from the kalman disturbance signal are shown in 

the Figures 7(b), 7(c) and 7(d). 
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                                              Figure-7(a).                                                                         Figure-7(b). 
 

 
 

                                       Figure-7(c).                                                                          Figure-7(d). 

 

Voltage surge causes a sudden increase of the 

system voltage for a short duration of 0.28 to 0.32 cycles 

in less than 1 minute. It occurs while disconnecting a 

heavy load for one quarter cycle as shown in the Figure-

8(a) and the corresponding features are shown in Figure 

8(b), 8(c) and 8(d). 

 

 
 

                                          Figure-8(a).                                                               Figure-8(b). 

 
 

                                       Figure-8(c).                                                                     Figure-8(d). 

 

Outages may be seen as a loss of voltage on the 

system for the duration of 0.5 cycles to 1min. An outages 

is generated by simulating a 3-phase dead short circuit to 

ground. The voltage waveform for an outage event shown 

in the Figure-9(a) and the corresponding features are 

shown in the Figure 9(b), 9(c) and 9(d). 
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                                           Figure-9(a).                                                                              Figure-9(b). 
 

 
 

                                       Figure-9(c).                                                                             Figure-9(d). 
 

Harmonics are generated by connecting a non 

linear load to the system for 10 cycles. Figure-10(a) shows 

the distortion of voltage waveform and their corresponding 

kalman filter outputs are given in the Figures 10(b), 10(c) 

and 10(d). 

 

 
 

                                         Figure-10(a).                                                                           Figure-10(b). 

 

 
 

                                         Figure-10(c).                                                                             Figure-10(d). 

 

Sag with harmonics are caused by the presence 

of a nonlinear load and occurrence of single line to ground 

fault for duration of 0.2 to 0.4 cycles .The waveform 

which contains harmonic distortion with sag event is 

shown in the Figure-11(a). The standard deviation, peak 

value and variances outputs of the kalman filter for this 

type of disturbances are shown in the Figures 11(b), 11(c) 

and 11(d). 
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                                           Figure-11(a).                                                                            Figure-11(b). 
 

 
 

                                           Figure-11(c).                                                                              Figure-11(d). 
 

Swell with harmonics is caused by the presence 

of nonlinear load and disconnecting the heavy load for 5 

cycles in the duration of 0.2 to 0.4 cycles. The waveform 

for harmonic distortion with swell is shown in the Figure- 

12(a) and the corresponding kalman filter outputs are 

given in the Figures 12(b), 12(c) and 12(d). 

 

 
 

                                             Figure-12(a).                                                                        Figure-12(b). 
 

 
 

                                             Figure-12(c).                                                                             Figure-12(d). 
 

Flicker disturbance is caused by a continuous and 

rapid variation of the system load. It is simulated by the 

continuous connection and disconnection of the heavy 

load. The waveform of the flicker is shown in the Figure-

13(a). The standard deviation, peak value and variance 

outputs of the kalman filter of the flicker waveform are 

shown in the Figures 13(b), 13(c) and 13(d). 
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                                             Figure-13(a)                                                                        Figure-13(b). 

 

 
 

                                         Figure-13(c).                                                                            Figure-13(d). 
 

Notch is a disturbance of the nominal power 

voltage waveform lasting for less than half a cycle. The 

disturbance is initially of opposite polarity and hence it is 

to be subtracted from the waveform. It is generated by the 

connection of the 3 phase non-linear load. The voltage 

notch waveform is shown in the Figure-14(a) and its 

corresponding features are given in the Figures 14(b), 

14(c) and 14(d). 

 

 
 

                                          Figure-14(a).                                                                            Figure-14(b). 
 

 
 

                                       Figure-14(c).                                                                               Figure-14(d). 
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The classification performance of the proposed method has been demonstrated through Table-3 and Figure-15.  

 

Table-3.Classification accuracy. 
 

S. No. Power quality disturbances 

Percentage of accuracy 

Input 

features 

Kalman filter based MLP 

Neural network 

1 Pure Sine wave 100 100 

2 Voltage Sag 100 100 

3 Voltage Swell 100 95 

4 Voltage Surge 100 100 

5 Outages 100 96 

6 Harmonics 100 100 

7 Sag  with Harmonics 100 96 

8 Swell  with Harmonics 100 96 

9 Flicker 100 97 

10 Notch 100 98 

Overall accuracy 97.8 

 

 
 

Figure-15. Bar diagram for the percentage of accuracy of the proposed method. 

 

 

5. CONCLUSIONS 

This paper presents a new method based on 

Kalman filter and Neural Network for the analysis and 

classification of the various power quality disturbances. 

The disturbance waveforms were generated through 

Matlab Simulink on the test system and the disturbances 

are inclusive of notch and flicker also. The PQ features 

such as standard deviation, peak value and variances were 

extracted through Kalman filter and a MLP based neural 

network has been applied for classifying the disturbances. 

It has been found that all the nine disturbances were 

classified accurately by the proposed method. MLP neural 

network can be trained for any input combination and its 

application is particularly suitable for classification of 

disturbances of varying nature. 
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