
 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5784

SCHEDULING OF SHARED MEMORY WITH MULTI - CORE

PERFORMANCE IN DYNAMIC ALLOCATOR USING ARM PROCESSOR

Venkata Siva Prasad Ch. and S. Ravi

Department of Electronics and Communication Engineering, Dr. M.G.R. Educational and Research Institute University, Chennai, India

E-Mail: siva6677@gmail.com

ABSTRACT

In this paper we proposed Shared-memory in Scheduling designed for the Multi-Core Processors, recent trends in

Scheduler of Shared Memory environment have gained more importance in multi-core systems with Performance for

workloads greatly depends on which processing tasks are scheduled to run on the same or different subset of cores (it’s

contention-aware scheduling). The implementation of an optimal multi-core scheduler with improved prediction of

consequences between the processor in Large Systems for that we executed applications using allocation generated by our

new processor to-core mapping algorithms on used ARM FL-2440 Board hardware architecture with software of Linux in

the running state. The results are obtained by dynamic allocation/de-allocation (Reallocated) using lock-free algorithm to

reduce the time constraints, and automatically executes in concurrent components in parallel on multi-core systems to

allocate free memory. The demonstrated concepts are scalable to multiple kernels and virtual OS environments using the

runtime scheduler in a machine and showed an averaged improvement (up to 26%) which is very significant.

Keywords: scheduler, shared memory, multi-core processor, linux-2.6-OpenMp, ARM-Fl2440.

1. INTRODUCTION AND MOTIVATION

A modern high-performance computing Multi-

Core system normally consists of Many processors, For

many decades, the performance of processors has

increased by hardware enhancements (increases in clock

frequency and smarter structures) to further enhance

single-thread performance communication in

Scheduler method to which work in specified by some

tasks assigned to resources to complete the manage the

total work, involved concept of the New scheduling tasks

makes that possible to computer tasking with a

single central processing unit (CPU). The scheduler to aim

the one of many goals in the processing variables,

fairness it is equal to CPU time for each processing in

times according to the priority and workload of each

processing threads. The work is mainly focused on the

design and development of the task scheduling between

the child and parent (or) any processing elements to meet

timing constraints while minimizing system energy

consumption and Time delay. Multi-core architectures

creates significant challenges in the fields of computer

architecture, software engineering for parallelizing

applications, and operating systems. In this paper, we

show that there are important challenges beyond these

areas. In particular, we expose a new security problem that

arises due to the design of multi-core architectures the

number of clock cycles spent with allocation and de-

allocation of shared memory is low for resolving.

However, not only the time and Computational used up on

the allocation and de-allocation is important, but also how

efficiently the allocated memory can be accessed.

Scheduling in multiprocessor real-time systems is an old

problem in multicore processors have brought a renewed

interest, along with new dimensions, to the challenge ,For

instance, there is a need to trade off different levels of

migration cost, different degrees of inter-core hardware

sharing (e.g. memory bandwidth), and so on. Our research

is aimed at providing new knobs to perform these tradeoffs

with additional application information an important

problem is how to assign processors to real-time

application tasks, allocate data to local memories, and

generate an efficient schedule in such a way that a time

constraint can be met and the total system energy

consumption can be minimized.

2. SHARED MEMORY

Shared Memory is an efficient means of passing

data between programs/processes. One program in a core

will create a memory portion which other core (if

permitted) can access. The permission is granted in a

regulated manner for Shared-memory in typically for

providing in both static and dynamic process creation of

tasks. the processes can created and directed by beginning

stage of the program execution by a directive to the

operating system and the CPU Logic Threads, or they can

be created during the execution of the program. The

typical implementation of thread allow to process start

another, child thread, process by a fork model has

allocated. The shared memory of the caches and

processing in Runtime has shown in Figure-1. In Three

processes are typically to manage the coordinating

processes in the shared memory programs for the

scheduling in the related thread. The starting, child or a

parent, process can wait for the termination of the child

process by calling join. These second prevents processes

from improperly accessing the shared memory resources.

The shared-memory model is similar to the data-parallel

model.

https://en.wikipedia.org/wiki/Central_processing_unit

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5785

Figure-1. Shared memory at runtime.

A. Shared memory programming

 A process creates a shared memory segment in a

core using shmget(). The original owner core of a shared

memory segment can assign ownership to another core

with shmctl(). It can also revoke this assignment and

prority levels can be set with respect to the order of

revokement. Other core processes in proper permission to

perform various control functions in the shared memory

segment using shmctl(). Once the created, a shared

segment is attached to a process address space using

shmat(). and detached using shmdt() (see shmop()). The

attaching process must have the appropriate permissions

for shmat(). Once attached, the process can read or write

to the segment, as allowed by the permission requested in

the attach operation. The developed core sharing features

include

a) The shared memory can be attached multiple times by

the same process.

b) A shared memory segment that can be described in a

control manner structure for a unique ID those points

to in the area of shared memory. These identifier of

the segment is called the shmid. The structure for the

shared memory segment control can be found in

<sys/shm.h>.

B. Shared memory allocation

The shared memory allocation and de-allocation

of the multi-core processor has implemented in the two

levels of memory allocation

They are

a) Kernel Level: memory management of OS sub-

systems.

b) User Level: implemented by UMA that is a library

responsible to manage the heap area.

 The External Memory allocation purpose systems

are now need to parallelize the work in order to get the

expected performance increment cores in the Scheduler. In

the extreme, run all the tasks of the parallel pieces in the

same core, such parallelism is completely wiped out.

Hence, the task-to-core allocation and the scheduling of

hardware resources between core can change completely

the performance of these systems.

C. Memory de-allocation

The kernel level of the multi-core memory

allocation and de-allocation has shown in the Figure-2.

The indirect data structure of the store matrices in

memory. The first child (0, 1) task writes in the next block

to allocate memory next to the alternate block. If any

memory allocation fails, the runtime systems return an

error and go to task 1. It is more difficult to de-allocate the

blocks in the run- time system cannot be decide to whether

a block will used in the future. For that multi-core

processor has be running across the shared memory for

Trying to move free memory to one large block. For

Example- a review of the Linux 2.6 scheduler structures in

the Linux, Each CPU has a run queue made up of 32

priority lists that are serviced in FIFO order. Tasks are

scheduled to execute in the end of their respective run

queue’s priority list. Each task has a time slice that

determines how to manage the child to parent of the

allocation of the shared memory in the data block It

translates the number of bytes to be transferred into the

number of 64-bit words, because it accesses the parent

shared memory via a 32-bytes the transfer sizes will be

used by preferring the maximum possible one based on the

address on the 0, 8, 16, 24 of the four threads. These

threads has run in the according to the program. In That

Two Processor scheduler has that above example has

shared the task scheduler between the processor A and

processor B. allocated location has that the tasks are to

shard between the processing of allocation of the module

as shown in the Figure-2.

Figure-2. Memory allocation in thread.

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5786

D. Scheduler in runtime

In scheduler the Shared memory management

allows task to allocate and de-allocate memory at runtime.

This is useful when new tasks can enter the system at

runtime or when a task itself has a dynamic memory

requirement. It is generally accepted that load balancing is

the greatest challenge it will explained in the shared

process programming. Therefore, on most architecture, a

find-first-bit-set instruction (FIFO) order is used to find

the highest priority bit set in 32-bit words. The time it

takes to find the task to execute depend on the number of

active tasks but instead on the number of priorities. Local

copies of global variables in child processes are private

and temporary It can trans from the number of bytes to be

transferred in the number of the 64-bit words in Processing

bit Size, because it accesses the parent shared memory via

a 32-bytes the transfer sizes will be used by preferring the

maximum possible one based on the address on the 0, 8,

16, 24 of the four threads. These threads has run in the

according to the program.

3. SCHEDULING ALGORITHMS

Scheduler working on new ways to take

advantage of application knowledge to use them as

parameter in the scheduling algorithms at all levels of the

computer system. The Operating systems mediate access

to shared hardware resources to assure optimal

performance and fairness in the software kernel. For this

treating the CPU as an indivisible resource diminishes the

operating system’s control over resource sharing. So there
are several challenges posed on operating system

scheduling algorithms designed for multi-core systems.

Shared memory multi-core system consists to the ready

queue where all the processes that are ready for execution

will be available in the threads. The CPU scheduling is

remarkably similar to other types of scheduling that have

been studied for years. In this proposed concept, a model

of the block sharing system &memory sharing is taken; the

criteria focused on providing an equitable share of the

processor per unit time to each child user or process is to

minimize the average waiting time. So it is good to have

an intelligent agent that combined with the scheduling will

efficiently allocate and redistribute the load for an

incoming process has shown in the Figure-3.

A. Major functions of the scheduler

The various functions of Scheduler implemented

in Linux kernel scheduler. The Linux scheduler

Contemporary multiprocessor operating systems, such as

Linux 2.6 use a two-level scheduling approach to enable

efficient resource sharing. The first level uses a distributed

run queue model with per core queues and fair scheduling

policies to manage each core. The second level is a load

balancer that redistributes tasks across cores. The first

level schedules in time, the second schedules in space. We

discuss each level independently in the subsections that

follow described below in Table-1 in detail. The load

balancing function also comes as part of this API.

Figure-3. Illustration of schedule.

Table-1. Linux 2.6 scheduler operations.

Function name Function role

Schedule Schedules the highestpriority task for execution

effective_prio
It Returns the effective priority of a task

(based on thestatic priority)

recalc_task_prio This Determines a task's bonus or penalty based on its idletime.

source_load Conservatively calculates the load of the source CPU

target_load
Liberally calculates the load of a target CPU (where atask has

the potential to be migrated).

migration_thread
The High-priority system thread can migrates tasksbetween

CPUs.

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5787

B. Lock-free algorithm

The Proposed algorithm of tasks handle in the

shared memory at the runtime the processing of the

schedule of proposing Hu level scheduling is one of a

family of critical path methods because it emphasizes the

path through the precedence graph with the greatest total

execution time. Although it is not optimal, it is known to

closely approximate the optimal solution for most graphs

has First note that the utilization of n independent tasks

with execution times is ei and periods pi can be written as

µ = ∑ ei pi �
�=1

If µ = 1, then the processor is busy 100% of the

time. So clearly, if µ> 1 for any task set, then that task set

has no feasible schedule of Horn’s algorithm. The

proposed algorithm is optimal with respect to feasibility

only among fixed priority schedulers; EDF is optimal

dynamic priority schedulers. In addition, EDF also

minimizes the maximum lateness. Also, in practice, EDF

results in fewer pre-emptions Shown in Figure-2 which

means less overhead for context switching. This often

compensates for the greater complexity in the

implementation.

Figure-4(b). Scheduler priority in task allocation

Example: Consider six tasks [T = 1, 2, 3, 4, 5, 6].

Each with execution time ei = 1, with precedence’s as
shown in Figure-4(a). The diagram means that task 1 must

execute before either 2 or 3 can execute, that 2 must

execute before either 4 or 5, and that 3 must execute

before 6. The deadline for each task is shown in The

Figure. The schedule labelled EDF is the EDF schedule.

This schedule is not feasible. Task 4 misses its deadline.

However, there is a feasible schedule. The schedule

labelled LDF meets all deadlines. Figure 4(b), task 1 has

level 3, tasks 2 and 3 have level 2, and tasks 4, 5, and 6

have level 1. Hence, a Hu level scheduler will give task 1

highest priority, tasks 2 and 3 medium priority, and tasks

4, 5, and 6 lowest priorities. According to the Algorithm

has run in the Figure-4, we see that the EDF scheduler is

the same as the LDF schedule. The modified deadlines are

as follows Table-2 the key is that the deadline of task 2

has changed from 5 to 2, reflecting the fact that its

successors have early deadlines. This causes LDF to

schedule task 2 before task 3, which results in a feasible

schedule.

 Figure-4(a). Scheduler priority in task allocation

Table-2. Task allocation In EDF to LDF.

EDF TASK 1 2 3 4 5 6

 ALLOCATION D1=1 D2=5 D3=4 D4=3 D5=5 D6=6

LDF TASK 1 2 3 4 5 6

 ALLOCATION D1=1 D2=2 D3=4 D4=3 D5=5 D6=6

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5788

4. HARDWARE DETAILS

The Forlinx ARM-9 Board of Multi-Core

processor used to demonstrate the memory sharing among

the cores. Alternately ARM-9 FL2440 its components has

CPU Samsung S3C2440A microcontroller, running

@400MHzRAM64MB SD RAM core can also be used

has shown in the Figure-5. The difference b/w the two

approach is in the network file system. In ARM-11 system

is loaded and does not require a ‘NFS’ file /folder in the
host. As a standalone from a SD-card, it can be mounted

and the code can be run. In ARM -9’NFS’ folder is created
and the code is placed in the roofs. The advantage is in

ARM-9 core the code changes are reflected instantly and

do not reboot &re completion using ‘make’ command as
in ARM-11.

Figure-5. Linux Dumped in ARM-9 with output file.

5. IMPLEMENTATION AND PERFORMANCE

ANALYSIS

A 32-bit ARM assembly language program has

designed in the Linux Dual Kernel ARM-9 processor to

written to implement the logical free algorithm which is

designed to keep the number of tasks are completed and

pending the data has been de-allocated. Once loaded more

instruction cache related to bus traffic should occur

function of the 64MB data cache of the ARM 9 and can be

increased cache. In Linux scheduler an operating system,

in general sense, the interaction between the applications

and available resources. The physical devices in the shared

memory the CPU can also be maintained in a resource to

scheduler task can temporarily allocate to task. The

scheduler can makes it possible to execute multiple

programs at the same time in the related to the thread in

the processor, An important goal of the scheduler to

allocate CPU time slices efficiently providing the

responsive user experience in The scheduler can also be

faced with such conflicting goals and minimizing the

response of times for a critical real time task while

maximizing the overall CPU utilization in the 32 bit

processor.

A. Child process implementation

The Child process Application in the Real-time

Program Interface is a portable, parallel programming

model for shared memory multithreaded in Linux Multiple

Kernels specification version 3.0 introduces a new task.

By using these tasking feature, applications can be

parallelized where the units of work generated in

dynamically in parallel shared memory, as recursive

structures or while loops.

The Task ‘N’ Has run in the Process implementation that
gas the automatic thread is generated. It may choose to

execute the task immediately or defer its execution until a

later time. The threads in the current team will take tasks

out of the block and execute them until the block is empty

it has shown in Figure-6. During the execution of a

program, a task may create, or spawn a child task so that

the spawned child task may run in parallel with the parent

task. Each task except the root task has exactly one parent

task. Pseudo code for the program illustrating the passing

of a simple piece of memory (bytes) between the processes

of a core is given below in Figure of a Linux 2.6 Kernel

Algorithm.

a) Creating shared memories

b) Start the child process

c) Attach the memory to parents process address

space

d) Resulting sharing with via shared memory

e) Synchronization routines among the child

f) Detach the multiple memory blocks

g) De-allocate shared memory blocks

h) Display the shared memory contents

 Step (vii) ensures dynamic de-allocation and

avoids overflow (or) dead memory allocation.

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5789

Figure-6. Integrating with multiple core.

6. RESULTS AND DISCUSSIONS

This research work is mainly focused on the

design and development of task scheduling algorithms in

shared memory of the De-allocate the unwanted or empty

task filling the list using multi-core platform of the ARM

processor to meet timing constraints while minimizing

system energy consumption. The listed in the content files

variables in child processes are private and temporary.

They are not running in the processor tasks to each other

and are destroyed when the processes ceases to exist (after

executing process-join). These mechanism to make

variable visible in the processes is by creating one memory

addresses that are visible to all the processes Shared

variables are freely visible to all the processes. Their

values can be changed by child processes during execution

and all changes are permanent. All changes are visible to

the parent process even after the children cease to exist. In

dynamic task scheduling, the each node makes a decision

for each child task in the core. This decision is based on

the current load balancing of the system. We do not

require a specific mechanism to make this decision,

because in part the decision is based on the queuing

mechanism. For example, the global queue, it is natural to

check the size of the queue as shown in the Table-3. If it is

above a minimum value, then the creating node mines the

task without queuing. It has shown believe that if the work

is balanced in the system, having the creator of a task child

will always be more efficient than enquiring the next task.

the benefits of affinity Those static techniques invariably

suffer performance costs. Consider a situation with 16

tasks and 4 processors as shown in Figure-7. If the tasks

all require the same mining time, speedup can be increased

With static load balancing, it is conceivable that the two

largest jobs in the mining could be assigned to the same

node, affording almost no speedup. For this reason, we

incorporate a queuing model to accommodate dynamic

task allocation.

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5790

Figure-7. Child process at runtime memory block de-allocation.

Table-3. Allocated/de-allocated memory space in child/parent processor.

Location

(CORE 16,24)

Child (0)

(CORE 0)

Child (1)

(CORE 8)
Location

(CORE 16,24)

Child (0)

(CORE 0)

Child (1)

(CORE 8)

0 255 239 8 247 231

1 254 238 9 246 230

2 253 237 10 245 229

3 252 236 11 244 228

4 251 235 12 243 227

5 250 234 13 242 226

6 249 233 14 241 225

7 248 232 15 240 224

7. CONCLUSION AND FUTURE WORK

The initiation of multi-core architectures has

successfully solved share memory of de-allocation in the

large database modules between the both child(Client) and

parent(Server) processor or any multi kernel processors

using OpenMP Linux Kernel file Lock-Free algorithms on

threading in multi core processor scheduling. The

scheduler for shared memory de-allocation with among

multiple cores concept has received/sending block data

between the Child processor to Parent processor for

reallocating the empty blocks to communicate as soon as

possible with one processor to other process for reducing

the time delay vice versa with assigning the cores list are

changing the tasks. The 32 bit cores location based on the

input and output files has placed on the parallel on the

multithreading concept for Future work the large database

Core[0] process child[0]&child[1] shared with core 1

 Core 2

 Core 3

 Core 1 Clears Sharing

Core 2 Clears Sharing

Core 3 Clears Sharing

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5791

mining and With this module we will develop the large

module getting the input across the OS developed socket

had installed in Linux Multi Kernel threads/program. The

Future Work in memory in Swapping if using static de-

allocation, code/data must return to same place, In

dynamic, can reallocate at more advantageous memory in

the multi-core schedule.

REFERENCES

[1] Shamim Yousefi, Samad Najjar Ghabel, Leyli

Mohammad Khanli. 2015. Modeling Causal

Consistency in a Distributed Shared Memory using

Hierarchical Colored Petri Net. Indian Journal of

Science and Technology. 8(33), Doi

no:10.17485/ijst/2015/v8i33/75502.

[2] Sowmithra Vennelakanti, S. Saravanan. 2016. Design

and Analysis of Low Power Memory Built in Self

Test Architecture for SoC based Design. Indian

Journal of Science and Technology. 8(14), Doi

no:10.17485/ijst/2015/v8i14/62716.

[3] A. J. Rajeswari Joe, N. Rama. 2015. Neural Network

based Image Compression for Memory Consumption

in Cloud Environment. Indian Journal of Science and

Technology. 8(15), Doi

no:10.17485/ijst/2015/v8i15/73855.

[4] M. Hemamalini, M. V. Srinath. 2015. Memory

Constrained Load Shared Minimum Execution Time

Grid Task Scheduling Algorithm in a Heterogeneous

Environment. Indian Journal of Science and

Technology. 8(15), Doi

no:10.17485/ijst/2015/v8i15/71373.

[5] Wenjing L, Lisheng W. 2011. Energy-Considered

Scheduling Algorithm Based on Heterogeneous

Multi-core Processor. 2011 International Conference

on Mechatronic Science, Electric Engineering and

Computer (MEC), Jilin pp.1151-54.

[6] Tan P, Shu J, Wu Z. 2010. A Hybrid Real-Time

Scheduling Approach on Multi-Core Architectures.

Journal of software. 5: 958-65.

[7] Anderson G, Marwala T, Nelwamondo F V. 2013.

Multicore scheduling based on learning from

optimization models. International Journal of

innovative computing, information and control, icic

international. 9: 1511-22.

[8] Kumar R, Tullsen D M, Ranganathan P, Jouppi N P,

Farkas K I. 2004. Single-ISA heterogeneous multi-

core architectures for multithreaded workload

performance. Proceedings of the 31
st
 annual

international Symposium on Computer Architecture,

ISCA. pp. 64-75.

[9] Broquedis F, Diakhate F, Thibault S, Aumage O.

2008. Scheduling Dynamic Open MP Applications

over Multicore Architectures, OpenMP in a New Era

of Paralleism, Springer-Berlin: Heidelberg. pp. 170-

180.

[10] Geng X, Xu G, Fu X, Zhang Y. 2012. A task

scheduling algorithm for multi-core- cluster systems

journal of computers. 7(11): 2797-804.

[11] Chen Y-S, Liao H C, Tsai T H. 2013. Real-Time Task

Scheduling in Heterogeneous Multi-core System-on-

a-Chip. IEEE Trans on parallel and distributed

systems.

[12] Dhotre P S S, Patil S. 2014. Task Management for

Heterogeneous Multi-core Scheduling. (IJCSIT)

International Journal of Computer Science and

Information Technologies. 5(1): 636-639.

[13] Saifullah A, Agrawal K, Lu C, Gill C. 2013. Multi-

core Real-Time Scheduling for Generalized Parallel

Task Models. Real-Time Systems. 49(4): 404-35.

[14] Ritson C G, Sampson A T, Barnes F R M. Multicore

Scheduling for lightweight communicating processes

coordination, Coordination Models and Languages,

Springer: Berlin Heidelberg. pp. 163-183.

[15] Mishra G, Gurumurthy K S. 2014. Dynamic task

scheduling on multicore automotive, International

journal of vlsi design and communication systems

(vlsics).

[16] Malhotra S, Narkhede P, Shah K, Makaraju S,

Shanmugasundaram M. 2015. A review of fault

tolerant scheduling in multicore systems international

journal of scientific and technology research. pp. 132-

136.

