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ABSTRACT 

Analytical solutions to the Euler equations of gas dynamics are not available for general cases. The Euler 
equations are three simultaneous partial differential equations representing the conservation of mass, momentum, and 
energy of the gas. In this paper, the Euler equations are solved using a finite volume numerical method. As the partial 
differential equations are of hyperbolic type, their solutions admit discontinuity. The finite volume solution is generally 
accurate at smooth regions and inaccurate at rough regions. Knowing which regions of the solutions where they are smooth 
or rough is the goal of this paper. To achieve our goal, here we propose the weak local residual of the entropy equation as a 
smoothness indicator for numerical solutions to the Euler equations. 
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INTRODUCTION  

The Euler equations have been applied to model 
gas dynamics [1-4]. They are also applicable in two-phase 
flow problems consisting of vapour and liquid phases [7]. 
The solution to the Euler equations can be either 
continuous or discontinuous. Unfortunately the general 
analytical solution to the Euler equations is not available 
so far.  

An attempt to get the solution is by using a 
numerical method, such as a finite volume method which 
is implemented in this paper. As an approximate solution, 
the finite volume numerical solution has errors. The finite 
volume numerical solution is usually accurate for smooth 
regions. In practice, researchers may need to determine 
which areas are smooth and rough, so that they can fix the 
inaccurate parts to be more accurate. 

In this paper, we propose to use the weak local 
residual of the entropy equation of the Euler equations. If 
the solution is exact, then the residual value is zero. If 
there are errors, the residual value is non zero. The larger 
the error implies the larger values of residuals. Weak local 
residual has also been used in solving the shallow water 
equations [5-6] and other conservation laws [1]. 

The next sections contain the main parts of this 
paper. First, we recall the mathematical model of the Euler 
equations of gas dynamics. Then we shall explain the 
numerical method to solve the Euler equations as well as 
to compute the weak local residual of the entropy 
equation. It will be followed by the presentation and 
description of our numerical results. Finally, some 
concluding remarks will be drawn. 
 
MATHEMATICAL MODEL 

The mathematical model for gas dynamics is 
given by the Euler equations. The Euler equations for 
mass, momentum, and energy of ideal gases are 
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Here,   represents the density, u  the velocity, p  the 

pressure, E  the total energy of the gas. We note the 
following relations for gas dynamics 
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where 4.1  and e  is the specific internal energy. In the 

vector form, the Euler equations can be written as 
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where q  is the vector of conserved quantities and )(qf  is 

the corresponding vector of flux function.  
The entropy relation for the Euler equations is  
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which is an equation for smooth solutions and inequality 

for non-smooth solutions [8]. Here, TEu ][ q  is 

the vector of conserved quantities; and 
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)/log()(  eq                                                (8) 

 
)()( qq  u                                                               (9) 

 
are the entropy function and entropy flux respectively. 
Again with this entropy pair, the entropy relation becomes 
strict inequality if the solution to the Euler equations is 
discontinuous. This entropy equation and entropy 
inequality are understood in the weak sense. 

As studied by Hudson [2], the Jacobian matrix of 
the Euler equations for ideal gases is  
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where the total specific enthalpy is 
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and the sound speed is  
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As calculated by Hudson [2], the eigenvalues of A  are 
 

au 1 , u2 , and au 3                                (13) 

 
corresponding to three different eigenvectors. 
 
NUMERICAL METHOD 

For scalar conservation laws 
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Constantin and Kurganov [1] used a weak local residual as 
a smoothness indicator for its numerical solutions. Let x  
be the cell width of uniformly discretized space domain, 
and t  be a given time step such that the numerical 
method is stable. The formulation of the weak local 
residual is 
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Implementing this formula to the entropy 

relation, we obtain 
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As we mentioned, we use a finite volume numerical 
method to solve the Euler equations. In a semi-discrete 
form, the finite volume method is 
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where Q  is the vector of approximate conserved 
quantities, F  is the vector of approximate fluxes and S  is 
the vector of the source term discretization. This scheme is 
called semi-discrete because we have discretize the Euler 
equations with respect to space, but the time variable is 
still continuous. 

The next step is to integrate the semi-discrete 
form (17) with respect to time. We can use any standard 
method of Ordinary Differential Equations (ODEs) solver. 
However, because we have used a first order method in 
space, it is better to use a first order method in time. This 
is because we will never get a finite volume method of 
order higher than one, even if we use higher order method 
in time. In this paper we implement the first order Runge-
Kutta method to integrate the semi-discrete form (17) with 
respect to time. Therefore, the fully discrete finite volume 
method is 
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We use the Lax-Friedrichs numerical flux 

function. We refer to LeVeque [4] and Puppo and 
Semplice [8] for the formulation of this flux function. 
Therefore, for non-boundary fluxes we obtain 
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Here we have dropped the superscript n  for writing 
simplicity, and note that 
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The time step t  is taken by considering the CFL 

(Courant-Friedrichs-Lewy) number, which is formulated 
as 
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where a  is the sound speed and the maximum of a is 
taken for the whole space domain. 
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NUMERICAL RESULTS 
We consider the Sod's shock tube problem [9]. 

This problem has also been used as a benchmark problem 
by a number of authors, such as Hudson [2] and Laney [3] 
to test the performance of their numerical methods. 

Suppose that we have a gas tube separated by a 
diaphragm so that there are two states of gases. The gas on 
the left of the diaphragm has 1 , 0u  and 1p . On 

the other side, the gas on the right has 125.0 , 0u  

and 1.0p . Here we have assumed to use SI units. The 

position of the diaphragm is at 0x . Using the 
aforementioned finite volume method, numerical results 
are recorded for time 25.0t . 

Discretizing the space domain ]5.0,5.0[  into 

1000 cells and using CFL number 3.0 , the 1L  error of the 
density is 0.0078 . This error is less than %1  which is 

very good quantitatively. Note that the the 1L  error 
formula that we use is 
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where N  is the number of cells, jq  is the exact value of 

the quantity at j th cell, and jQ  is the numerical value of 

the quantity at j th cell.  

 

Figure-1. Density results of the shock tube problem with 
1000 cells at time 25.0t . 

Figure-2. Velocity results of the shock tube problem with 
1000 cells at time 25.0t . 

Figure-3. Pressure results of the shock tube problem with 
1000 cells at time 25.0t . 

Figure-4. Total energy results of the shock tube problem 
with 1000 cells at time 25.0t . 

 
The exact and the numerical results are shown in 

Figures. Figure-1 shows the density, Figure-2 the velocity, 
Figure-3 the pressure, Figure-4 the total energy, Figure-5 
the internal energy, and Figure-6 the weak local residual 
of the entropy equation. 

Based on the error and pictorial results, the finite 
volume method produce quite good solution. However, we 

notice that the finite volume numerical solution is 
diffusive at around corners and discontinuities. This is 
well-captured by our proposed smoothness indicator, the 
weak local residual of the entropy equation. The 
smoothness indicator produces large values at around 
corners and discontinuities, where the numerical solution 
is diffusive, that is, inaccurate. These are the places 
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needing special treatment in order to get more accurate 
numerical solutions. However, this special treatment is 
beyond our goal in this paper. 

In the solution of this shock tube problem, we 
obtain three propagating waves. The first is a rarefaction 
fan moving and expanding to the left. The second is a 
contact discontinuity propagating to the right. This 
discontinuity is the position where the two gases remain 

separated. The third is the shock discontinuity. This is 
consistent with the results of Laney [3]; Sod [9] and others 
(see the References).  

In summary of our results, the weak local residual 
has the correct behaviour as expected. This smoothness 
indicator is a good candidate to be implemented in 
adaptive numerical methods for the Euler equations, which 
we will consider for future research work. 

 

 
Figure-5. Internal energy results of the shock tube problem 

with 1000 cells at time 25.0t . 

 
Figure-6. Weak local residual of the entropy equation of 
the shock tube problem with 1000 cells at time 25.0t . 

 
CONCLUSIONS 

A smoothness indicator for numerical solutions to 
the Euler equations has been proposed. The smoothness 
indicator is the weak local residual of the entropy equation 
relating to the Euler equations for ideal gases. Numerical 
results show that our proposed method can accurately 
detect the places where numerical solutions are smooth 
and rough. It suggests that this smoothness indicator is a 
good candidate to be implemented in adaptive numerical 
methods for the Euler equations. 
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