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ABSTRACT 

Transient stability constrained optimal power flow (TSCOPF) is able to reduce costs while keeping the operation 

point away from the stability boundary. While especially useful in modern power system operations, TSCOPF problems 

are practically very hard to solve; unacceptable computational time is considered to be one of the largest barriers in 

applying TSCOPF-based solutions. The basic idea of the proposed method is to model transient stability as an objective 

function rather than an inequality constraint and consider classic Transient Stability Constrained OPF (TSCOPF) as a 

tradeoffs procedure using Pareto ideology. Second, a parallel elitist Non-dominated Sorting Genetic Algorithm II (NSGA-

II) is used to solve the proposed multi-objective optimization problem; the parallel algorithm shows an excellent 

acceleration effect and provides a set of Pareto optimal solutions for decision makers to select. Case study results 

demonstrate the proposed multi-objective algorithm in bus system is quite strategic. 
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1.  INTRODUCTION 

Optimal Power Flow (OPF) is an important tools 

for de- termini the optimal operating state of a power 

system while maintaining certain types of constraints. 

Only static security constraints were considered in early 

research, and the optimized dispatching solutions were 

prone to be close to the stability boundary, particularly in a 

competitive power market. Research interest has grown 

for Transient Stability Constrained Optimal Power Flow 

(TSCOPF) to overcome this limitation. 

Mathematically, TSCOPF is commonly modelled 

as a large- scale Non-Linear Programming (NLP) 

problem, which includes the constraints of Differential-

Algebraic Equations (DAE). Numerical discretization 

methods and constraint transformation methods are 

considered as the two main approaches to deal with DAEs 

in TSCOPF problems.  Recently, other solutions have also 

been studied in the literature, including transient energy 

function methods, intelligence algorithms, implicit 

enumeration, and single-machine equivalent methods. 

Among  these approaches,  a combination of the numerical  

discretization  method with the Interior Point Method 

(IPM) has become one of the mainstream  algorithms, 

since  it was  easily  proved  and  extended.  One of the 

important extensions of IPM is the Reduced-space IPM 

(RIPM). It is widely used in chemical engineering and 

process optimization to solve discretized NLPs with few 

degrees of freedom, and has showed great performance 

improvement for solving numerical discretization-based 

TSCOPF.  

However, the curse of dimensionality still exists, 

especially for TSCOPF with large-scale systems and 

multiple contingencies. Here we adopt parallel computing 

technology to relieve the curse of dimensionality in 

TSCOPF problems; TSCOPF is commonly modelled as a 

complicated Non-Linear Programming (NLP) problem 

including massive constraints of differential algebraic 

equations.  

The two main approaches to study TSCOPF are 

simulation based on numerical discretization and 

constraint transformation. Recently, various methods have 

also been proposed, including trajectory  sensitivity  

method,  semi-infinite  programming,  transient  energy  

function  method,  implicit  enumeration method, and 

single-machine equivalent method. Among these 

approaches, a combination of the numerical discretization 

with the Interior Point Method (IPM) has been considered 

as a mainstream. 

To overcome this problem, Intelligence 

Algorithms (IA) such as Differential Evolutionary 

Algorithm (DE) and Particle Swarm Optimization (PSO) 

were introduced to enhance robustness. The competition 

between IA and IPM is one of the most active factors in 

TSCOPF research and is also one of the main lines of this 

paper. 

Though, great progress around TSCOPF has been 

reported in the existing literatures mentioned above, the 

mathematical models are always limited to single-

objective optimization. Specifically, fuel cost is modelled 

as the sole objective function, transient stability and 

voltage or branch load flow are formulated as constraints.  

However, it must be noted that certain differences do exist 

between transient stability and static security constraint. 

Static security  constraints  are  rigid  and must be always 

respected during the power system operation; while,  

contingencies  are not bound  to happen,  sometimes,  to 

obtain  a lower  fuel or operation  cost,  some  dispatch  

centers allow generators to operate under a certain degree 

of instability in a certain period of time. 
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The first motivation of this paper is to adopt 

Pareto optimal ideology to redefine TSCOPF problem and 

propose a Multi-Objective OPF (MOPF) model 

considering transient stability. Inspired by the satisfactory 

application results of DE and PSO in solving TSCOPF, the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

is introduced to solve the proposed multi-objective 

optimization problem, which has been demonstrated to be 

effective in research areas such as optimal Distributed 

Generation (DG) allocation and transmission expansion 

planning. NSGA-II provides a set of Pareto optimal 

solutions for decision makes to select. This is the most 

important and significant advantage of the proposed 

method.  

 

2. PROBLEM FORMULATION 

 

A. Transient stability model and other constraint 

The transient stability problem is commonly 

modelled as a set of DAEs. To simplify TSCOPF 

formulations, a classical generator model is typically used 

to describe the electro-mechanic transient behaviour of a 

generator, which can be expressed by the second order 

differential equations as below 

 { �̇௜ = ߱௢߱௜߱̇௜ = ௉ಸ�−௉��−஽���ெ�             ݅ ߳ ��                   (1) 

 

For the k
th

 contingency, the swing equations (1) 

are discretizedat every time step with an implicit 

trapezoidal method and converted into a series of algebraic 

equations: 

 {∆�௜,௧௞∆߱௜,௧௞    ݅ ߳ ��, ��߳ ݐ , ݇ ߳ ��                                              (2) 

 

Equation (2) is directly included in the NLP 

formulations of TSCOPF. The discretized and are defined 

as 

 

{ 
 ∆�௜,௧௞ = �௜,௧௞ − �௜,௧−ଵ௞ − ߱଴∆ݐሺ߱௜,௧௞ + ߱௜,௧−ଵ௞ ሻʹ∆߱௜,௧௞ = ௜�ʹݐ∆௜ܦ) + ͳ)߱௜,௧௞ + ௜�ʹݐ∆௜ܦ) − ͳ)߱௜,௧−ଵ௞               ሺ͵ሻ 
 ��௜,௧௞ = ′௜ܧ ௜௝,௧௞ܩ)′௝ܧ∑ ௜௝,௧௞�ݏ݋ܿ + �௜௝,௧௞ ௜௝,௧௞�݊݅ݏ )   ݆߳��                      (4) 

 

Where and are the elements of the reduced 

admittance matrix [4], which is a densematrix that changes 

its values duringthe pre-fault, fault-on, and post-fault 

stages. The relative angle, namely the rotor angle with 

respect tocentre of inertia (COI), is used as the criterion to 

describe the transient stability performance of generators: 

 {∆�௜,௧௞ = �௜,଴ − �஼ை�,ை∆߱௜,௧௞ = �௜,௧௞ − �஼ை�,௧௞    ݅ ߳ ��, ��߳ ݐ , ݇ ߳ ��                       (5) 

 

Where the COI is defined as 

 

{ �஼ை�,ை ∑ெ���,0�∑ெ��஼ை�,௧௞ = ∑ெ���,��∑ெ�
   ݅ ߳ ��                                                   (6) 

 

It should be noted that the system structure is 

assumed to be known beforehand and preserved during 

numerical simulations that the discretization on DAEs (1) 

can be performed. This assumption actually refers to the 

system continuity. Thatis, if the controller models with 

limiters, dead areas, and control mode switcher are 

considered, these elements may introduce discrete events 

or states into the system and change it from continuous to 

hybrid. In this case, the corresponding algebraic equations 

(2) are unable to be determined before numerical 

simulation. In fact; all numerical discretization based 

TSCOPF approaches are built on the assumption that the 

system is continuous, namely the system is described by 

DAEs whose structure does not change. These discrete 

events or states are absent from the classical generator 

model used in this paper but are actually quite common in 

real-life models. 

In the above TSCOPF model, (7.1) is the 

objective function (fuel cost or the modification amount of 

scheduled contract power generation in deregulated power 

market); (7.3) is the static security constraints such as 

thermal constraints of branches and nodal voltage 

constraints; (7.4) is the constraints of generator power 

outputs or voltages and the constraints of transformer taps, 

etc. All kinds of  Lyapunov direct methods such as 

transient energy function method and the extended equal 

area criterion method are unable to give enough robustness 

and calculation speed. 

On the other hand, engineers have long been 

accustomed to use simulation method to judge the 

transient stability. If the simulation time is long enough, 

simulation method is able to guarantee sufficient accuracy 

and if the so-called classical model is used, the simulation 

method is also fast enough. 

 
 

Figure-1. Illustrative regions of steady-state stability, 

transient stability and practical stability. 
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Different from steady-state stability, the transient 

stability is defined for a specified disturbance as shown in 

Figure-1. In this paper, we further define practical stability 

by adding inequality constraints equation to transient 

stability before, during and after transient period, practical 

stability is not considered in the following section of this 

paper, which will be considered in next version.  

 

B. Multi-objective OPF model  

     considering transient stability  

     (fitness function constraints) 

The dispatch of power system is associated with a 

variety of factors. In many cases, engineers concern more 

about how to coordinate cost, security and stability of 

power system rather than getting a single rigid TSCOPF 

solution. In this way, transient stability is modelled as one 

of OPF optimization objectives, rather than a constraint. 

To meet practical application, additional power flow 

optimization objectives can also be incorporated into the 

model. The multi-objective OPF model can be expressed 

as follows: 

 Mi�௨,� ଵܨ = ܿሺ�ሻ                                                          (7.1) 

 Mi�௨,� ଶܨ = ߲ሺ࢟࢔ሻ                                                        (7.2) 

 Mi�௨,� ଷܨ = ܿሺ࢞ሻ                                                          (7.3) 

 S. T.  E�uati�� ∶ ʹ.ʹ − ʹ.5                                            (7.4) 

௡+ଵݕ  − ௡ݕ − ∆௧ଶ [�ሺݑ, ,ݔ ௡+ଵሻݕ + �ሺݑ, ,ݔ [௡ሻݕ = Ͳ        (7.5) 

 

F1 is always modeled as the total cost of fuel 

consumed by generators: 

 Fଵ = ∑ ሺܽ௜ + ܾ௜��௜ + ܿ௜��௜ଶ ሻ.ேಸ௜=ଵ                                        (8) 

 

PGi - Active output of the i
th

 generator 

ai, bi, ci -  Fuel cost coefficients of the  i
th 

generator. 

F2 is the objective function quantifying transient 

stability, and can be of various modelling approaches. 

Here, we only consider the rotor angle stability and adopt 

the following penalty function: 

 Fଶ = ∑ ∑ ∑ {[߰(|�௡௜ ሺ݇ሻ − �௡஼ை�ሺ݇ሻ|, �′)�]}�∆�௡=ଵேಷ௞=ଵ .ேಸ௜=ଵ     (9) 

 

is sorted again based on non-domination and only the best. 

 

 
 

Figure-2. Flowchart of the working principle of NSGA-II. 

 

Among these, NSGA proposed by Srinivas was 

considered generally as a direct expression of Goldberg’s 
idea and of the best performance. Based on NSGA, Deb 

further proposed NSGA-II with an elitism strategy, which 

achieves a calculation complexity decrease and avoids the 

setting of sharing parameter. 

NSGA-II has been demonstrated to be among the 

most efficient algorithms for multi-objective optimization 

on a number of benchmark problems. Its detailed 

implementation procedure can be found in a brief 

description of NSGA-II procedure is shown in Figure-2. 

The population is initialized as usual and then 

sorted based on non-domination levels in to fronts. The 

first front is a set of chromosomes being completely non-

dominant or not dominated by any other individuals in the 

current population, the second front being dominated by 

the chromosomes in the first front only and the front goes 

so on. In addition to front rank, a new parameter called 

crowding distance is calculated for each chromosome. The 

crowding distance is a measure of how close a 

chromosome is to its neighbours. Large average crowding 

distance will result in better diversity in the population. 

Parents are selected from the population by using Binary 

Tournament Selection based on operator Հn. Հn is based on 

front rank and crowding distance as follows: 

 

a) The chromosome with the higher front rank 

value is greater than the other regardless of crowding 

distance, and is selected;  

b) The chromosome with the larger crowding 

distance is greater than the others located in the same 

front, and is selected. 

The selected parent population generates off-

springs after the operation of crossover and mutation 

operators. The population with the current population and 

current off-springs is sorted again based on non-

domination and only the best N individuals are selected, so 

elitism is guaranteed, where N is the population size. The 

selection is also based on front rank and the crowding 

distance on the last front.  
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3. NON-DOMINENT SORTING GENETIC  

    ALGORITHM-II (NSGA-II) 

The idea behind the non-dominated sorting 

procedure is that a ranking selection method is used to 

emphasize good points and a niche method is used to 

maintain stable subpopulations of good points. The 

population is ranked on the basis of an individual’s non-

dominated. The non-dominated individuals are assumed to 

constitute the first non-dominated front in the population 

and assigned a large dummy fitness value. The same 

fitness value is assigned to give an equal reproductive 

potential to all these non-dominated individuals. To 

maintain the diversity in the population these classified 

individuals are then shared with their dummy fitness 

values. 

After sharing, these non-dominated individuals 

are ignored temporarily to process the rest of the 

population in the same way to identify individuals for the 

second non-dominated front. These non-dominated points 

are then assigned a new dummy fitness value that is kept 

smaller than the minimum shared dummy fitness of the 

previous front. This process is continued until the entire 

population is classified into several fronts. 

The population is then reproduced according to 

the dummy fitness values. A stochastic remainder 

proportionate selection is used in this study. Since 

individuals in the first front have the maximum fitness 

value, they always get more copies than the rest of the 

population. The population is ranked on the basis of an 

individual’s non-dominated. This was intended to search 

for non-dominated regions or Pareto-optimal fronts. This 

results in quick convergence of the population toward non-

dominated regions, and sharing helps to distribute it over 

this region. By emphasizing non-dominated points, NSGA 

favours the schemata representing Pareto-optimal regions. 

The efficiency of NSGA lies in the way multiple 

objectives are reduced to a dummy fitness function using a 

non-dominated sorting procedure 

The Non-dominated Sorting Genetic Algorithm 

NSGAII uses a faster sorting procedure, an elitism 

preserving approach and a parameter less niching operator. 

The population is initialized as usual and then sorted based 

on non-domination levels in to fronts. The NSGA-II has 

been used for a wide variety of applications in a number of 

different fields. For some applications the NSGA-II has 

been used in its basic form whereas for some applications 

it has been modified in different ways. 

 

A) Step by step procedure for NSGA-II 

 

 
 

Figure-3. NSGA-II procedure. 

 

NSGA operation in IEEE 39 bus, the following 

steps are to be followed: 

 

Step 1: Initially create a population  

First string = fuel cost 

Second string = transient stability 

Step 2: Perform power flow program. Newton 

power flow program for IEEE 39 bus system 

Step 3: Find the fitness values for each individual 

fitness value  

Step 4: Based on the fitness values, a new 

population has been selected from the old population 

based on the evaluation function as given.  

Step5: Genetic operators (crossover and 

mutation) applied to the population that has been selected 

to create new solutions. 

Step6: Fitness value is evaluated for new 

chromosomes and use them into the population. 

Step7: Crowing tournament selection is 

evaluated and the crowing distance is obtained. As shown 

in Figure-3. 

Step8: Elitism operation is conducted, best of the 

offspring’s is selected and elitism process is done 

Step9: If it exceeds the time, stop the process and 

provide the best Individual if not, proceed from step 4.  

 

B) Objectives 

The multi-objective model proposed in this paper 

as an effective quantitative analysis tool for Optimal 

Power Flow (OPF) associated with cost, transient stability 

and security a Non-dominated Sorting Genetic Algorithm-

II (NSGS-II) is introduced to search the Pareto optimal 

solution. NSGA-II belongs to a class of evolutionary 

algorithms is used as an in this paper. The parallel 

algorithm shows an excellent acceleration effect and 

provides a set of Pareto optimal solutions for decision 

makers to select. 

 

4. SIMULATION RESULTS  

IEEE 39 bus system was used for testing Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) and 

genetic Algorithm (GA), the result were obtained. A 

multi-objective model is proposed in this paper as an 
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effective quantitative analysis tool for Optimal Power 

Flow (OPF) associated with cost, security and transient 

stability.  

The obtained Parento optimal solution set, rather 

than a single strictly transient stable solution for decision 

makers to select their ideal schemes according to different 

preference. This is essentially different from traditional 

TSCOPF and the proposed method is considered to be able 

to get a theoretically strictly transient stable solution as 

well if enough iterations of evolution are carried out.  

The objective such as minimizing fuel cost and 

improvement of voltage in power system ware obtained. 

The parameter used by NSGA-II is shown in Table-1. The 

results proves the NSGA-II is more efficient than the 

conventional method. 

 

 
 

Figure-4. The ten-machine, 39-bus system 

 

Table-1. NSGA-II parameters. 

 

Dimension of search space 3 

Structure type Madaline 

Population size 8 

Number of generation 50 

Network Type Back Propagation 

Mutation 0.2 

Fitness increment 0.2 

Crossover length 0.3 

 

 

 

 

 

 

 

 

 

4.1 Convergence speed of NSGA-II 

 

 
 

Figure-5. Convergence speed of NSGA-II. 

 

4.2 Rotor angle curve of NSGA-II 

 

 
 

Figure-6. Rotor angle curve of NSGA-II 

 

4.3 Voltage profile for IEEE 39 bus system  

The voltage profile in IEEE 39 bus system before 

and after fault is shown in Figure-5.3, where the red plot 

indicates the voltage profile before fault and the blue plot 

indicated after fault voltage profile of the bus system. 
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Figure-7. Voltage profile. 

 

5. CONCLUSION 

Large-scale multi-contingency TSCOPF 

problems are one of the most time-consuming 

computational tasks in power system. In this paper, an 

efficient RIPM-based two-level parallel decomposition 

approach is proposed to solve TSCOPF problems with 

high computing performance and memory efficiency. 

Bench- marks were performed with a series of test cases 

on a Beowulf cluster. Case studies indicate that the 

proposed approach inherits the convergence properties 

from the conventional serial IPM algorithm and shows 

great capacity to accelerate TSCOPF solutions. 

The results shows that voltage profile is enhanced 

at buses and fuel cost are considerably decreased, model 

transient stability as an objective function rather than an 

inequality constraint and consider classic Transient 

Stability Constrained OPF (TSCOPF) as a trade-off 

procedure using Pareto ideology and minimization of 

generation cost. Thus it proves that the efficiency of 

NSGA-II is better than the conventional method. 

The experimental results show that NSGA-II is 

competitive across all test problems. It gives good results 

by producing a set of non-dominated solutions (Pareto 

optimal solution) for the user to choose the most 

appropriate one rather than restricting to a single solution. 

It can also be seen that the addition or deletion of 

constraints or objectives does not affect the performance 

of NSGA-II much because each objective function is 

treated separately. Hence, NSGA-II is appropriate for the 

transient stability constrained Optimal Power Flow (OPF). 

 

FUTURE SCOPE 

Current numerical discretization based 

approaches are unable to handle hybrid systems in theory. 

However, discrete events and states are actually quite 

common in real-life models. Controller models with 

limiters, dead areas and control mode switchers are the 

basic elements for realistic dynamic models in power 

systems. Further efforts should be put on improving 

algorithms to handle hybrid systems. 

Static power flow objective function is reserved 

in the proposed multi-objective OPF model, and NSGA-II 

is naturally not sensitive to the number of objective 

functions, so more objective functions such as loss, in 

addition to fuel cost and transient stability can be 

considered. To shorten the overhead for communication 

and further improve optimization speed, the 

implementation of the parallel algorithm on a 

supercomputer rather than PC cluster is a worth trying 

method. 

We further define practical stability by adding 

inequality constraints equation to transient stability before, 

during and after transient period. Practical stability is not 

considered in the following section of this paper, which 

will be considered in next version. 

Future scope can be carried on with Parallel Non-

dominated Sorting Genetic Algorithm and a cutting-edge 

algorithm, also voltage profile of each buses and speed 

convergence will be displayed for the above algorithms. 

Here we have considered the IEEE39 bus system; further 

this implementation can be implemented in higher bus 

systems such as IEEE57, IEEE118, IEEE300 and 

IEEE1000 etc. 

 

Nomenclature 

The following symbols used that are defined as follows: 

NSGA-II Non-dominated Sorting Genetic 

Algorithm - II 

GA  Genetic Algorithm 

NR  Newton Raphson  

TSCOPF Transient Stability Constraint Optimal 

Power Flow 

OPF  Optimal Power Flow 

MW  Mega Watt  

x,x   Network variable / variable vector 

y, y  System state variable / variable vector 

u, u  Control variable/variable vector 

yn, yn+1  Difference form of system state variable 

or state variable value at time n or n+1 

n  Step counter 

∆t  Integration step length 

T  Simulation time length 

PGi  Active output of the i
th

 generator 

NG  Number of generators 

NB  Number of buses 

NL  Number of branches 

NF  Number of expected faults 

ai, bi, ci  Fuel cost coefficients of the  i
th

 

generator. 

e  Real part of bus voltage. 

f  Imagine part of bus voltage. 

U  Magnitude of bus voltage. 

Pij,Pji  Active power flow on branches. 

E’  Generator voltage behind direct axis 

transient reactance. 

δo  Initial values of rotor angles. 

δt  Rotor angles at time for the th 

contingency. 
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ωt  Angular speed deviation at time for the 

th contingency. 

δ  Rotor angle vector 

ω  Angular speed vector � ࢏࢔ ሺ࢑ሻ  Rotor angle of k
th 

generator at 

integration step after the expected fault � ࢔���ሺ࢑ሻ  Center of inertia of systemrotor angles at 

integration step after the k
th

 expected fault. 

Tj  Moment of inertia of the j
th 

generator � ࢓࢐�࢞  Maximum of the j
th 

objective function � ࢔࢏࢓࢐  Minimum of the j
th

 objective function 

PL  Total active load 
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