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ABSTRACT 

Computational Data Grid provides massive resource sharing and aggregated computing resources in a dynamic 

manner. Due to the limitation of available heterogeneous resources distributed through several networks in computational 

data grid, occurrence of failure poses severe problem. Providing efficient fault tolerance mechanism is a key optimization 

technique for improving scalability and attain QoS based fault tolerant dynamic replication in a wise manner. In this paper, 

Merkle Damgard Clock Synchronized based Fault Tolerant (MDCS-FT) mechanism is developed to overcome the fault 

occurrence in computational data grid. MDCS-FT in cloud services allows for concurrent transaction without relying on a 

centralized grid component, which amounts for better scalability. Clock Synchronized with Berkeley algorithm uses the 

optimized different data grid sequences to attain QoS based fault tolerant dynamic replication. Berkeley algorithm in 

MDCS-FT mechanism is more suitable for easily identifying the fault with time server. Time server in MDCS-FT 

Mechanism periodically fetches the time from all the clients and averages the results on cloud zone to secure data objects 

replication in cloud data grid by removing the fault. Experimental results demonstrate that the proposed mechanism 

achieves better performance by improving the scalability and QoS (error rate and transmission delay) and minimizes the 

fault tolerance compared to the state-of-the-art works.  

 
Keywords: computational data grid, fault tolerance, clock synchronized, berkeley algorithm, dynamic replication, time server. 

 

1. INTRODUCTION 

Fault tolerance mechanism for computational 

data grid has received great attention due to the distributed 

nature of the data. Due to the inaccessibility of network, 

development difficulty, faulty resources, fault may take 

place in the result or performance of the system may be 

corrupted. A fault tolerant service identifies errors and 

recovers them without involvement of any external agents, 

such as humans. Many research persons have contributed 

in this field and also developed a lot of fault tolerance 

mechanism.  Enhanced Dynamic Hierarchical Replication 

in Data Grid (EDHR-DG) [1] minimized the data access 

time by applying Weighted Scheduling Strategy. 

However, it experience maintains issues and fail to plan 

real data grids. Optimized Approach on Cloud Storage 

(OACS) [2] efficiently improved the storage and access 

efficiency of small files by applying file merging and pre-

fetching scheme. But, it has less storage efficiency with 

the aim of optimizing the file merging/grouping strategy 

and the peak size of a merged file/logic unit. 

To avoid the fault occurrence in cloud, Merkle 

DamgardClock Synchronized based Fault Tolerant 

(MDCS-FT) mechanism is proposed in this paper. MDCS-

FT mechanism has two strategies. First a novel 

MerkleDamgard Hash Dynamic Replication (MDHDR) 

model is developed with objective of improving the 

scalability. The MDHDR model considers the number of 

transaction blocks to be delivered, the initial vector and 

the intermediate function in order to obtain the 

MerkleDamgard Hash function. Second a clock 

synchronization strategy, called Clock Synchronized with 

Berkeley algorithm is designed with the aim of improving 

the QoS in an efficient manner.  

The rest of the paper is organized as follows. We 

present the issues of fault tolerance in Section 2 and 

present the proposed mechanism with the aid of block 

diagram and algorithmic steps. Section 3 provides with the 

experimental setup to conduct experiments. The 

simulation results are analysed and discussed in Section 4. 

Finally, Section 5 concludes the paper. 

 

2. RELATED WORK 

Fault tolerance mechanism is used to preserve the 

transmission of expected services in spite of the fault 

existence caused the errors in the system itself. Fault 

tolerance mechanism avoids the failures in the presence of 

faults. A novel architecture, Advanced Cloud Protection 

System (ACPS) [3] was introduced with the objective of 

minimizing the resilient against attacks using security 

management layer. Though storage and attacks were 

addressed, but the job execution time was compromised. 

Pre-fetching based Dynamic Data Replication Algorithm 

(PDDRA) [4] aiming at reducing the job execution time 

was introduced with the aid of pre-fetching and 

replacement algorithm. Another method to address job 

execution time was introduced in [5] for smart grid 

applications.  

Privacy preserving the collusion tolerance is the 

two main issues to be tackled for data grid in cloud 

environment. An external aggregator protocol was 

introduced in [6] aiming at reducing the attack and 

therefore minimize the collision rate. Though collision rate 

was addressed, but the computational cost remained 

https://plus.google.com/112605678268059119614
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unsolved. With the objective of reducing the 

computational cost in [7] a novel Partition Solution Space 

based approach was introduced. This approach not only 

reduced the computational cost but also the rate of 

scalability. In [8], energy-efficient fault tolerance 

mechanism was introduced with the aid of k-out-of-n-

computing. With the increase in the data size of the user, 

fault also increases. To address the faulty rate a 

mechanism for distributed accountability was introduced 

in [9].  

Current public cloud implementations mainly 

concentrate on providing scaled-up and scaled-down 

computing power and storage. In [10], Decentralized Self-

Adaptation Mechanism was introduced using marked-

based heuristics to minimize the cost of decentralization. 

However, scalability remained unaddressed. Fault tolerant 

load balancing algorithm was designed in [11] to attain 

minimum response time and optimal computing node 

utilization. However, this method does not consider the 

security related issues. A system-level fault-tolerant 

mechanism [12] was developed for message passing 

applications where it able to detect node faults and 

recovering the processes automatically. But, it requires 

special attention when a process loses several connections. 

Sparse Grids and a Fault-tolerant Combination Technique 

[13] were presented to reduce the computational 

complexity and its inherent ABFT properties. Multi agent 

System Architecture of the SETL Grid Control Module is 

illustrated in [14] for the control and monitoring of the 

SETL process. However, it requires appropriate tools for 

an efficient storage, analysis, and visualization of the 

available data. Based on the aforementioned methods and 

techniques stated, a novel Fault Tolerant mechanism is 

designed in cloud using Clock Synchronized with 

Berkeley algorithm for efficient cloud service provisioning 

which detailed described in the forthcoming subsections. 

 

3. PRELIMINARIES  

In this section, we first describe the system model 

and then a MerkleDamgard Hash Dynamic Replication 

model without relying on a centralized grid component 

which is important for achieving good performance and 

scalability. 

 

3.1 System model 

In this work, we presume a MerkleDamgard Hash 

failure model where faulty users (i.e. client or servers) in 

cloud services act in an arbitrary manner and that at most 

݊‘ replicas are faulty out of a total of ’ݎ‘ = ݎ͵ +ͳ’replicas. We also assume that the users are connected by 
an untrustworthy network that may dwindle while 

delivering data packets, distort them, or deliver the data 

packets in an irregular manner.  

 

3.2 Design of MerkleDamgard hash dynamic  

      replication model 

The MerkleDamgard Hash Dynamic Replication 

model is designed in such a manner that the cloud services 

allows for concurrent transaction without relying on a 

centralized grid component. Let us consider that the secure 

data objects replica in cloud is implemented by ‘ݎ’replicas 
and executes the processes as requested by the users (i.e. 

clients). The replicas and the users (i.e. clients) run in 

different nodes that are connected by a network. Figure-1 

shows the MerkleDamgard Hash Dynamic Replication 

model with separate replicas and clients. 

 

 
 

Figure-1. MerkleDamgard hash dynamic replication model with separate clients and replicas. 

 

The MerkleDamgard Hash Dynamic Replication 

model Replicas use a MerkleDamgardHash function 

‘MDHሺሻ’ to evaluate transaction blocks and uses message 
authentication codes (MACs) to authenticate transaction 

data packets ‘DPi’ coming from all user (i.e. client) 
requests. Let us consider the transaction blocks as ‘TBi’ 

where ‘V’ denotes the initial vector with ‘fi’ representing 
the intermediate function obtainedas transaction blocks are 

appended with ‘ZP’ representing the zero pads.  Figure-2 

given below shows the Construction of MerkleDamgard 

Hash function. 

 

 
 

Figure-2. Construction of MerkleDamgard hash function. 
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As shown in the figure, for each transaction 

block, the function ‘ ௜݂’ obtains the initial value,  in 
addition to the initial vector value ‘ܸ’ integrates with the 
transaction block ‘ܶܤ௜’ to obtain intermediate result and 
then zero padded with ‘ܼ�’ to produce the final 
MerkleDamgard Hash function ‘ܪܦܯሺሻ’ respectively. 

The ‘ܪܦܯሺሻ’ is mathematically formulated as given 

below: 

ሺሻܪܦܯ  =  ∑ ௜݂  ∪ ௜ܤܶ   ∪  ܼ�௜�௜=ଵ       (1) 

 

From (1), ‘ ௜݂’ represents the intermediate 
function, ‘ܶܤ௜’ represents the transaction blocks and ‘ܼ�௜’ 
the zero padding inserted resulting in the MDH function. 

Once the MDH function is evaluated, message 

authentication codes (MACs) uses session key pairs for 

each replica pair. Let us consider replica pair ‘ܽ’ and ‘ܾ’. 
Then, the mathematical formulation for MAC evaluation 

to perform authentication is as given below: 

௜,௝ሻܣሺܪܦܯ  →  (2)    ݆ ݋ݐ ݅ ݉݋ݎ݂ ݐ݊݁ݏ ݇ܿ݋݈ܤ ݊݋݅ݐܿܽݏ݊ܽݎܶ

௝,௜ሻܣሺ ܪܦܯ →  (3)   ݅ ݋ݐ ݆ ݉݋ݎ݂ ݐ݊݁ݏ ݇ܿ݋݈ܤ ݊݋݅ݐܿܽݏ݊ܽݎܶ

 

From (2) and (3), ‘ܣ௜,௝’ evaluates the MAC 
transaction block sent from ‘݅’ to ‘݆’ whereas ‘ܣ௝,௜’ 
evaluates the MAC transaction block sent from ‘݆’ to 
‘݅’.Each replica shares a secret key with each client that is 

used for efficient communication between the replica and 

the client and is formulated as given below: 

��௞ݐ݁ݎܿ݁ܵ  =  ∑ ሺܷݎ݁ݏ௜ , ሻ�௜=ଵݐ௜ݕ݁�       (4) 

 

From (4), the secret key ‘ܵ݁ܿݐ݁ݎ௞��’ is obtained 
for each user (i.e. client) ‘ܷݎ݁ݏ௜’ and assigned with a key 
 respectively. The key is ’ݐ‘ ௜’ for each time intervalݕ݁�‘
updated in a periodic manner by the client (i.e. at time t). 

If the key updating is not performed by the client, the 

replica discards the current key for that client. As a result 

the client refreshes the key. 

 

 )nput: Transaction Blocks Ǯܶܤ௜ = ,ଵܤܶ  ,ଶܤܶ … , �ܤܶ ǯ, Zero Padding Ǯܼ�ǯ, Transaction Data Packets Ǯܦ�௜ = ,ଵ�ܦ  ଶ�ܦ , … , ��ܦ ǯ, Vector Ǯܸǯ, User Ǯܷݎ݁ݏ௜ = ଵݎ݁ݏܷ  , ,ଶݎ݁ݏܷ … , ௜ݕ݁�ǯ, Key = Ǯ�ݎ݁ݏܷ = ,ଵݕ݁�  ଶݕ݁� , … ,  ǯݐǯ, Time Ǯ�ݕ݁�
Output: Scalable addressability of concurrent transaction  

Step 1: Begin Step ʹ:          For each Transaction Blocks Ǯܶܤ௜ ǯ Step ͵:                      For each Transaction Data Packets Ǯܦ�௜ ǯ 
Step 4:                                    Measure MerkleDamgard (ash function Ǯܪܦܯሺሻǯ using ȋͳȌ 

Step 5:                                    Perform key sharing using (4) 

Step 6:                      End for 

Step 7:          End for  

Step 8: End  
 

Figure-3. MerkleDamgard Hash Replication algorithm. 

 

From the Figure-3 given above the 

MerkleDamgard Hash Replication algorithm performs two 

important steps. First, for each transaction blocks and data 

packets, MerkleDamgard Hash function is evaluated. 

Followed by this, the second step performs key sharing for 

efficient data packet communication between the users 

with the objective of improving the scalability which in 

turn reduce the fault occurrence significantly.  

 

3.3 Design of clock synchronization with berkeley  

Clock Synchronized with Berkeley algorithm 

uses the optimized different data grid sequences to attain 

QoS based fault tolerant dynamic replication. A clock ‘ܥ’ 
is said to be non-faulty if there said to exists a threshold 

(i.e. drift value for non-faulty clock) ‘�ଵ’ such that for 
time ‘ݐଵ’ and ‘ݐଶ’ with different data grid sequences 

ܩܦ‘ ௜ܵ’ attain QoS based fault tolerant and is 
mathematically formulated as given below: 

 ͳ −  �ଵ < ஼ ሺ�మሻ− ஼ ሺ�భሻ�మ− �భ < ͳ + �ଶ      (5) 

 

The error rate is measured by each user on the 

basis of its own clock synchronized with MDH function. 

Two clocks ‘ܥଵ’ and ‘ܥଶ’ of two users ‘ܷݎ݁ݏଵ’ and 
 if ’ݐ‘ ଶ’ are said to be synchronized at timeݎ݁ݏܷ‘
ሻ[ݐ]ଵݎ݁ݏଵሺܷܥ‘ − ሻ[ݐ]ଶݎ݁ݏଶሺܷܥ  <  �’.From this, set ‘݊’ 
clocks are said to be synchronized with ‘݊’ users if the 
following condition is said to be satisfied. 

ሻ[ݐ]ଵݎଵሺܷܵ݁ܥ ݂݅  − ሻ[ݐ]ଶݎ݁ݏଶሺܷܥ … … . ሻ[ݐ]�ݎ݁ݏሺܷ�ܥ <  �    (6) 

 

From (6), ‘ܥଵ’ and ‘ܥଶ’ are clock synchronized 
with user ‘ܷݎ݁ݏଵ’ and ‘ܷݎ݁ݏଶ’ respectively for a specified 
constant ‘�’. Due to the non-zero drift values of all clocks, 

the clock rate does not remained synchronized without 

certain periodic cycle. So, in the proposed mechanism, the 

users periodically resynchronize clock values in order to 

maintain an efficient global time with the objective of 

reducing the error rate.  

The periodical resynchronization of clock values 

for each user with respect to global time is performed 

between successive grid sequences is called the 

resynchronize clock intervals (i.e. a constant) denoted by 
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 ’ଵݎ݁ݏܷ‘ ଴’ when userݐ‘ Let us consider a time .’ܫܥܴ‘
began its process, then the time of ‘݅�ℎ’ resynchronize 
value is then formulated as given below: 

௜ݐ  = ଴ݐ  +  (7)        ܫܥܴ݅ 

 

Let ‘ܽ’ and ‘ܾ’ be two non-faulty nodes and ‘ݐ’ 
be the clock time for node ‘ܽ’. Then, when a node ‘ܽ’ 

wants to broadcast transaction block to node ‘ܾ’ at time 
 ሻ’ reaches ‘ܾ’afterݐሺ�ܥ‘ ሻ’, this transaction blockݐሺ�ܥ‘
certain amount of time with a delay ‘ܦ’. Therefore, the 
transaction block message is delivered to node ‘ܾ’ with a 
delay and is formulated as given below: 

 ሺ ௜ܶ , ܽ, ܾሻ → ሻݐሺ�ܥ  +  (8)       ܦ 

 )nput: Threshold Ǯ�ଵǯ, Time Ǯݐଵ, ݐଶǯ, Data Grid Sequences Ǯܵܩܦ௜ ܩܦ = ଵܵ, ,ଶܵܩܦ … , �ܵܩܦ ǯ, User Ǯܷݎ݁ݏ௜ = ,ଵݎ݁ݏܷ  ,ଶݎ݁ݏܷ … , �ݎ݁ݏܷ ǯ, Transaction Blocks Ǯܶܤ௜ = ,ଵܤܶ  ,ଶܤܶ … ,  ǯ�ܤܶ
Output: Minimized error rate during transaction block delivery between 

users 

Step 1: Begin 

Step 2:          For each data grid sequences ܵܩܦ௜  

Step 3:                    Measure QoS based fault tolerant using (5) 

Step 4:          End for 

Step 5:          For each user ܷݎ݁ݏ௜  

Step 6:                     Measure clock synchronization using (6) 

Step 7:                     Measure resynchronize clock intervals using (7) 

Step 8:                     Deliver transaction blocks between nodes using (8) 

Step 9:           End for 

Step 10: End 
 

Figure-4. Clock synchronization algorithm. 

 

This error is small because of the non-faulty 

nature of the nodes and the communication between the 

broadcast of transaction block is established. Therefore, 

the error rate during the broadcast of transaction block is 

reduced in a significant manner. Figure-4 shows the clock 

synchronization algorithm for efficient transaction block 

delivery between users. As shown in the figure 4, the 

Clock Synchronization algorithm performs two important 

steps. During the first step for each data grid sequences, 

QoS based fault tolerant value is measured. Followed by 

which for each user in the second step, clock 

synchronization and resynchronize clock intervals are 

measured. Finally, transaction blocks between users are 

delivered. This QoS based fault tolerant clock 

synchronization helps in reducing the error rate.  

 

3.4 Design of berkeley algorithm  

Finally, Berkeley algorithm in MDCS-FT 

mechanism is more suitable for easily identifying the fault 

with time server. Time server in MDCS-FT Mechanism 

periodically fetches the time from all the clients and 

averages the results on cloud zone to secure data objects 

replication in cloud data grid by removing the fault. 

MDCS-FT Mechanism with Berkeley algorithm highlights 

the work with fault tolerance and also improves the cloud 

service provisioning. The client whose clock differs by a 

value outside of a given tolerance in MDCS-FT 

Mechanism is disregarded as faults. The users involved in 

the synchronization each execute a time daemon process 

that is responsible for delivering the transaction block to 

other users. One of these users is designated to be the 

master. The others users are referred to as the slaves. The 

master user polls each node’s periodically, asking it for the 
time. When all the results are obtained the master user 

computes the average time in addition to its own time and 

correspondingly decides the faulty and non-faulty nodes 

with time server. Figure-5 shows the Berkeley Clock 

Synchronized model. 

 

 
 

Figure-5. Berkeley clock synchronized model. 
 

Let us consider three nodes (i.e. users) ‘ܷݎ݁ݏଵ’ 
have timestamp ‘ܶ ଵܵ’ ‘ʹ: ʹͷ’, ‘ܷݎ݁ݏଶ’ have timestamp 
‘ܶܵଶ’ ‘ʹ: Ͳͷ’ and ‘ܷݎ݁ݏଷ’ have timestamp ‘ܶܵଷ’ ‘ʹ: Ͷͷ’ 
respectively. As shown in the figure, with the Berkeley 

Clock Synchronized model, the highest timestamp with 

‘ʹ: ʹͷ’ is elected as the master user (i.e. ‘ܷݎ݁ݏଵ’). The 
other two nodes (i.e. ‘ܷݎ݁ݏଶ’ and ‘ܷݎ݁ݏଷ’) are the slave 
users. The master user ‘ܷݎ݁ݏଵ’sends a synchronize query 
to two other users ‘ܷݎ݁ݏଶ’ and ‘ܷݎ݁ݏଷ’. As a response the 
two slave users sends the time stamp to the master user. 

The master user performs the averages the results on the 

cloud zone using three time stamps (i.e. of ‘ܷݎ݁ݏଶ’ and 
 ଵ’) and is formulatedݎ݁ݏܷ‘ ଷ’ and its own time stampݎ݁ݏܷ‘

as given below: 
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ܵܤ = ଶሻݎ݁ݏሺܷ ݌݉ܽݐݏ݁݉݅ܶ] + ଷሻݎ݁ݏሺܷ ݌݉ܽݐݏ݁݉݅ܶ  +  ଵሻ/͵]                                                  (9)ݎ݁ݏሺܷ ݌݉ܽݐݏ݁݉݅ܶ 

 

From (9), the Berkeley Synchronized value is 

obtained using the timestamp of 

,ଵݎ݁ݏܷ‘  ଷ’. The three synchronized valuesݎ݁ݏܷ ݀݊ܽ ଶݎ݁ݏܷ
are then averaged (i.e. (2.25 + 2.05 + 2.45)/3 = 2.25). This 

average value forms the threshold ‘ܶℎ’. The value lesser 

than ‘ܶℎ’ is considered as the non-faulty node whereas the 

value greater than ‘ܶℎ’ is considered as the faulty node 
and disregarded from the network. Figure-6 shows the 

Berkeley Synchronized algorithm.  

 )nput: Users ǮUseri =  Userଵ, Userଶ , … , Usernǯ, Timestamp ǮTSi =  TSଵ , TSଶ, … , TSnǯ, Threshold ǮThǯ 
Output: 

Step 1: Begin 

Step 2:    For each users Useri 
Step 3:             For each timestamp TSi 
//Identify master user and slave user 

Step 4:                      Measure timestamp 

Step 5:                      Assign highest timestamp user as master user 

Step 6:                      Send synchronize query by master user to slave users 

Step 7:                      Slave users reply by sending their timestamp 

Step 8:                      Measure average timestamp (i.e. Thusing (9)) 

Step 9:                      )f ǮThǯ <Timestamp ሺUseriሻ 

Step 10:                                 User is a non-faulty node 

Step 11:                    End if Step ͳʹ:                  )f ǮThǯ >Timestamp ሺUseriሻ 

Step 13:                           User is a faulty node 

Step 14:                           Disregard Useri 
Step 15:                  End if 

Step 14:          End for 

Step 15:      End for 

Step 16: End 
 

Figure-6. Berkeley Synchronized algorithm. 

 

As shown in the above Figure, the Berkeley 

Synchronized algorithm performs the secure data objects 

replication in cloud data grid by removing the faulty nodes 

in the cloud zone. This is achieved through Berkeley 

Synchronized value. This is turn efficiently identifies the 

faulty node and disregards them resulting in the reduced 

transmission delay.  

 

4. Experimental settings  

In this section, the investigational setup for 

designing MDCS-FT Mechanism is explained and the 

experiments were conducted on using GridSim simulator 

performed on Cloud environment. The GridSim simulator 

performed on Cloud environment offers distinct resource 

configurations for several virtual machine instances. Each 

virtual machine instance type is configured with a specific 

amount of memory, CPUs, and local storage. The MDCS-

FT Mechanism is equipped with two quad core 2.33-2.66 

GHz Xeon processors (8 cores total), 7 GB RAM, and 

1690 GB local disk storage.  

The performance evaluation tests aimed at 

comparing the Enhanced Dynamic Hierarchical 

Replication in Data Grid (EDHR-DG) [1] and Optimized 

Approach on Cloud Storage (OACS) [2] with the proposed 

MerkleDamgard Clock Synchronized based Fault Tolerant 

(MDCS-FT) mechanism. So to study the MDCS-FT 

mechanism using the simulator, we proposed a simulation 

environment that has the following parameters: the 

number of users varies between 20 and 140 with 

transaction block size of ranging from 5 to 35, the 

transaction data packets is equal to 5 packets to 35 packets 

with packet size of l pieces of data with a size 10 MB. The 

following parameters including scalability, error rate, fault 

tolerance rate and transmission delay in cloud serviceare 

evaluated.  

 

5. DISCUSSION 

The MerkleDamgardClock Synchronized based 

Fault Tolerant (MDCS-FT) mechanism is compared 

against with the existing Enhanced Dynamic Hierarchical 

Replication in Data Grid (EDHR-DG) [1] and Optimized 

Approach on Cloud Storage (OACS) [2].The experimental 

results using Grid Sim simulator in Cloud environment are 

compared and analysed through table and graph form 

given below.  

 

5.1 Impact of scalability  

Scalability is one of the most important standard 

metrics used to measure the performance of fault tolerant 

systems for computational data grid in cloud environment. 

Scalability is mathematically formulated as given below; 
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ܵ = ሺܶܤ ∗  ܶ݅݉݁�஻ሻ      (10) 

 

From (10), scalability ‘ܵ’ is measured on the 
basis of the product of total number of transaction blocks 

submitted ‘ܶܤ’ to total amount of time necessary to 
complete the transaction block ‘ܶ݅݉݁�஻’. Scalability is 
used to measure the ability of the computational data grid 

to accommodate the transaction blocks. 

 

Table-1. Tabulation for scalability. 
 

No. of Transaction 

Block (TB) 

Scalability (ms) 

MDCS-

FT 

EDHR-

DG 
OACS 

5 0.68 0.89 0.96 

10 0.75 0.94 1.00 

15 0.82 1.01 1.07 

20 0.85 1.04 1.10 

25 0.91 1.10 1.16 

30 0.99 1.20 1.26 

35 1.10 1.31 1.37 

 

 
 

Figure-7. Measure of scalability. 

 

To support transient performance, in Table-1 we 

apply a MerkleDamgard Hash Replication algorithm and 

comparison made with two other existing methods EDHR-

DG [1] and OACS [2]. From the above tabulation, 

scalability refers to the number of transaction blocks 

addressed at minimum time interval. Figure-7 show that 

the MerkleDamgard Clock Synchronized based Fault 

Tolerant (MDCS-FT) mechanism provides higher amount 

of scalability when compared to EDHR-DG [1] and OACS 

[2]. With the application of MerkleDamgard Hash 

Replication algorithm, MerkleDamgard Hash function 

evaluates transaction blocks in an efficient manner using 

intermediate function and zero padding. This in turn 

authenticates transaction data packets using Message 

Authentication Code using session key pairs for each 

replica pair helps to improve the number of transaction 

blocks being addressed and therefore the scalability rate 

for computational data grid is improved using MDCS-FT 

mechanism by 23.27% compared EDHR-DG [1]  and 

30.52% compared to OACS [2] respectively.  

 

 

5.2 Impact of error rate 

Error rate is measured on the basis of the 

difference between the users’ in different data grid 

sequences to be synchronized with the number of users 

synchronized.  

ܴܧ  = ∑ ௜ݎ݁ݏܷ − ௜=ଵ�݀݁ݖ݅݊݋ݎℎܿ݊ݕݏ ݏݎ݁ݏݑ ݂݋ ݋ܰ    (11) 

 

From (11), the error rate ‘ܴܧ’ is measured based 
on the number of users in different grid sequences ‘ܷݎ݁ݏ௜’. 
When the error rate is lower, the method is said to be more 

efficient and it is measured in terms of megabytes (MG). 

 

Table-2. Tabulation for error rate. 
 

No. of users 
Error rate (MB) 

MDCS-FT EDHR-DG OACS 

20 23.1 33.9 41.5 

40 38.7 46.3 53.8 

60 49.6 57.2 66.7 

80 55.8 63.4 72.9 

100 69.3 77.1 85.6 

120 78.4 86.2 94.7 

140 82.3 90.1 99.6 

 

 
 

Figure-8. Measure of error rate. 

 

The targeting results of error rate using MCDS-

FT mechanism with two state-of-the-art methods [1], [2] 

in Table-2 presented for comparison based on the number 

of users for measuring fault tolerance in cloud 

environment. From Figure-8, it is evident that the error 

rate is reduced using the proposed MDCS-FT mechanism. 

The Clock Synchronization for different users with 

optimized data grid sequences results in the reduced error 

rate in MDCS-FT mechanism. With the application of 

Clock Synchronization ‘݊’ clocks are said to be 
synchronized with ‘݊’ users, resulting in the minimization 

of error rate. At the same time, in MDCS-FT mechanism, 

the users periodically resynchronize clock values due to 

the non-zero drift values of all clocks the efficient 

separation of single event detection to multiple event 

detection is made in an efficient and therefore minimizing 

the error rate. With the resynchronized clock values, an 

efficient global time is maintained and sends the results of 

resynchronized clock values between successive grid 

sequences. MCDS-FT mechanism reduces the error rate 

by 18.00% compared to EDHR-DG [1] and 35.58% 

compared to OACS [2] respectively. 
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5.3 Impact of transmission delay 

The transmission delay is the time taken to 

transmit the transaction block with respect to the data 

packets ready for transmission.  

ܦܶ  = ∑ ௜�ܦ ∗ ܶ݅݉݁ ሺܦ�௜ሻ�௜=ଵ     (12) 

 

From (12), the transmission delay ‘ܶܦ’ is 
measured using the number of data packets ready for 

transmission ‘ܦ�௜’ and time for each transaction block 
‘ܶ݅݉݁ ሺܶܤ௜ሻ’ respectively. Lower the transmission delay, 
more efficient the method is said to be.  

 

Table-3. Tabulation for transmission delay. 
 

Data Packets 

(DP) 

Transmission delay (ms) 

MDCS-FT EDHR-DG OACS 

5 13.1 14.09 16.3 

10 21.8 23.11 26.11 

15 35.6 37.09 40.12 

20 41.3 43.06 46.16 

25 59.4 61.07 64.17 

30 68.3 71.06 74.15 

35 74.2 76.05 79.14 

 

 
 

Figure-9. Measure of transmission delay with respect 

to data packets. 

 

As listed in Table-3, MDCS-FT mechanism 

measures the transmission delay on cloud zone to secure 

data objects replication in cloud data grid with respect to 

data packets. It is measured in terms of milliseconds (ms). 

Figure-9 presents the variation of transmission delay with 

respect to data packets to measure fault tolerant dynamic 

replication. All the results provided in Figure-9 confirm 

that the proposed MDCS-FT mechanism significantly 

outperforms the other two methods, EDHR-DG [1] and 

OACS [2]. The transmission delay is reduced in the 

MDCS-FT mechanism using the Berkeley Synchronized 

algorithm. With the application of Berkeley Synchronized 

algorithm, execute a time daemon process that is 

responsible for delivering the transaction block to other 

users. Followed by this, a master slave block is established 

using the Berkeley Synchronized value. This master slave 

block in MDCS-FT mechanism in turn reduces the 

transmission delay by 4.47% compared to EDHR-DG [1]. 

As a result, secure data objects replication is performed in 

cloud data grid by removing the faulty nodes in the cloud 

zone in the MDCS-FT mechanism using the threshold 

value. The synchronized value greater than the threshold 

are disregarded as faulty nodes. This efficient segregation 

of fault and non-faulty nodes in MDCS-FT mechanism 

helps in reducing the transmission delay by 13.13% 

compared to OACS [2].   

 

6. CONCLUSIONS 

In this paper, MerkleDamgard Clock 

Synchronized based Fault Tolerant (MDCS-FT) 

mechanism is provided based on the Clock Synchronized 

with Berkeley algorithm for efficient cloud service 

improves the scalability and fault tolerance rate in 

computational data grid. As the mechanism uses 

MerkleDamgard Hash Replication algorithm in a dynamic 

manner, it improves the scalability through efficient 

delivery of transaction block using hash function. Finally, 

the Berkeley Synchronized algorithm is designed that 

improved the fault tolerance rate in a significant manner. 

Different data packets with varied transaction block sizes 

on computational data grid in cloud environment analyze 

the faulty and non-faulty nodes. A series of simulation 

results are performed to test the scalability, error rate, 

transmission delay and fault tolerance rate and therefore to 

measure the effectiveness of MCDS-FT mechanismwith 

an improvement of scalability by 26.90% and reduces the 

error rate by 26.79% compared to state of the art works.  
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