
 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6022

BERKELEY SYNCHRONIZED ALGORITHM BASED FAULT

TOLERANT MECHANISM FOR COMPUTATIONAL DATA

GRID IN CLOUD ENVIRONMENT

Ramachandra V. Pujeri

1
, S. N. Sivanandam

2
 and N. Suba Rani

3

1MIT College of Engineering, Kothrud, Pune, Maharashtra, India
2Educational Advisor, Karpagam Group of Institutions, Coimbatore, Tamil Nadu, India

3Pollachi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India

ABSTRACT

Computational Data Grid provides massive resource sharing and aggregated computing resources in a dynamic

manner. Due to the limitation of available heterogeneous resources distributed through several networks in computational

data grid, occurrence of failure poses severe problem. Providing efficient fault tolerance mechanism is a key optimization

technique for improving scalability and attain QoS based fault tolerant dynamic replication in a wise manner. In this paper,

Merkle Damgard Clock Synchronized based Fault Tolerant (MDCS-FT) mechanism is developed to overcome the fault

occurrence in computational data grid. MDCS-FT in cloud services allows for concurrent transaction without relying on a

centralized grid component, which amounts for better scalability. Clock Synchronized with Berkeley algorithm uses the

optimized different data grid sequences to attain QoS based fault tolerant dynamic replication. Berkeley algorithm in

MDCS-FT mechanism is more suitable for easily identifying the fault with time server. Time server in MDCS-FT

Mechanism periodically fetches the time from all the clients and averages the results on cloud zone to secure data objects

replication in cloud data grid by removing the fault. Experimental results demonstrate that the proposed mechanism

achieves better performance by improving the scalability and QoS (error rate and transmission delay) and minimizes the

fault tolerance compared to the state-of-the-art works.

Keywords: computational data grid, fault tolerance, clock synchronized, berkeley algorithm, dynamic replication, time server.

1. INTRODUCTION

Fault tolerance mechanism for computational

data grid has received great attention due to the distributed

nature of the data. Due to the inaccessibility of network,

development difficulty, faulty resources, fault may take

place in the result or performance of the system may be

corrupted. A fault tolerant service identifies errors and

recovers them without involvement of any external agents,

such as humans. Many research persons have contributed

in this field and also developed a lot of fault tolerance

mechanism. Enhanced Dynamic Hierarchical Replication

in Data Grid (EDHR-DG) [1] minimized the data access

time by applying Weighted Scheduling Strategy.

However, it experience maintains issues and fail to plan

real data grids. Optimized Approach on Cloud Storage

(OACS) [2] efficiently improved the storage and access

efficiency of small files by applying file merging and pre-

fetching scheme. But, it has less storage efficiency with

the aim of optimizing the file merging/grouping strategy

and the peak size of a merged file/logic unit.

To avoid the fault occurrence in cloud, Merkle

DamgardClock Synchronized based Fault Tolerant

(MDCS-FT) mechanism is proposed in this paper. MDCS-

FT mechanism has two strategies. First a novel

MerkleDamgard Hash Dynamic Replication (MDHDR)

model is developed with objective of improving the

scalability. The MDHDR model considers the number of

transaction blocks to be delivered, the initial vector and

the intermediate function in order to obtain the

MerkleDamgard Hash function. Second a clock

synchronization strategy, called Clock Synchronized with

Berkeley algorithm is designed with the aim of improving

the QoS in an efficient manner.

The rest of the paper is organized as follows. We

present the issues of fault tolerance in Section 2 and

present the proposed mechanism with the aid of block

diagram and algorithmic steps. Section 3 provides with the

experimental setup to conduct experiments. The

simulation results are analysed and discussed in Section 4.

Finally, Section 5 concludes the paper.

2. RELATED WORK

Fault tolerance mechanism is used to preserve the

transmission of expected services in spite of the fault

existence caused the errors in the system itself. Fault

tolerance mechanism avoids the failures in the presence of

faults. A novel architecture, Advanced Cloud Protection

System (ACPS) [3] was introduced with the objective of

minimizing the resilient against attacks using security

management layer. Though storage and attacks were

addressed, but the job execution time was compromised.

Pre-fetching based Dynamic Data Replication Algorithm

(PDDRA) [4] aiming at reducing the job execution time

was introduced with the aid of pre-fetching and

replacement algorithm. Another method to address job

execution time was introduced in [5] for smart grid

applications.

Privacy preserving the collusion tolerance is the

two main issues to be tackled for data grid in cloud

environment. An external aggregator protocol was

introduced in [6] aiming at reducing the attack and

therefore minimize the collision rate. Though collision rate

was addressed, but the computational cost remained

https://plus.google.com/112605678268059119614
https://www.google.co.in/search?hl=en&authuser=0&q=Maharashtra&spell=1&sa=X&ei=-Xt2Ve33H6eimQWL2oPoDg&ved=0CBoQvwUoAA

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6023

unsolved. With the objective of reducing the

computational cost in [7] a novel Partition Solution Space

based approach was introduced. This approach not only

reduced the computational cost but also the rate of

scalability. In [8], energy-efficient fault tolerance

mechanism was introduced with the aid of k-out-of-n-

computing. With the increase in the data size of the user,

fault also increases. To address the faulty rate a

mechanism for distributed accountability was introduced

in [9].

Current public cloud implementations mainly

concentrate on providing scaled-up and scaled-down

computing power and storage. In [10], Decentralized Self-

Adaptation Mechanism was introduced using marked-

based heuristics to minimize the cost of decentralization.

However, scalability remained unaddressed. Fault tolerant

load balancing algorithm was designed in [11] to attain

minimum response time and optimal computing node

utilization. However, this method does not consider the

security related issues. A system-level fault-tolerant

mechanism [12] was developed for message passing

applications where it able to detect node faults and

recovering the processes automatically. But, it requires

special attention when a process loses several connections.

Sparse Grids and a Fault-tolerant Combination Technique

[13] were presented to reduce the computational

complexity and its inherent ABFT properties. Multi agent

System Architecture of the SETL Grid Control Module is

illustrated in [14] for the control and monitoring of the

SETL process. However, it requires appropriate tools for

an efficient storage, analysis, and visualization of the

available data. Based on the aforementioned methods and

techniques stated, a novel Fault Tolerant mechanism is

designed in cloud using Clock Synchronized with

Berkeley algorithm for efficient cloud service provisioning

which detailed described in the forthcoming subsections.

3. PRELIMINARIES

In this section, we first describe the system model

and then a MerkleDamgard Hash Dynamic Replication

model without relying on a centralized grid component

which is important for achieving good performance and

scalability.

3.1 System model

In this work, we presume a MerkleDamgard Hash

failure model where faulty users (i.e. client or servers) in

cloud services act in an arbitrary manner and that at most

݊‘ replicas are faulty out of a total of ’ݎ‘ = ݎ͵ +ͳ’replicas. We also assume that the users are connected by
an untrustworthy network that may dwindle while

delivering data packets, distort them, or deliver the data

packets in an irregular manner.

3.2 Design of MerkleDamgard hash dynamic

 replication model

The MerkleDamgard Hash Dynamic Replication

model is designed in such a manner that the cloud services

allows for concurrent transaction without relying on a

centralized grid component. Let us consider that the secure

data objects replica in cloud is implemented by ‘ݎ’replicas
and executes the processes as requested by the users (i.e.

clients). The replicas and the users (i.e. clients) run in

different nodes that are connected by a network. Figure-1

shows the MerkleDamgard Hash Dynamic Replication

model with separate replicas and clients.

Figure-1. MerkleDamgard hash dynamic replication model with separate clients and replicas.

The MerkleDamgard Hash Dynamic Replication

model Replicas use a MerkleDamgardHash function

‘MDHሺሻ’ to evaluate transaction blocks and uses message
authentication codes (MACs) to authenticate transaction

data packets ‘DPi’ coming from all user (i.e. client)
requests. Let us consider the transaction blocks as ‘TBi’

where ‘V’ denotes the initial vector with ‘fi’ representing
the intermediate function obtainedas transaction blocks are

appended with ‘ZP’ representing the zero pads. Figure-2

given below shows the Construction of MerkleDamgard

Hash function.

Figure-2. Construction of MerkleDamgard hash function.

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6024

As shown in the figure, for each transaction

block, the function ‘ ௜݂’ obtains the initial value, in
addition to the initial vector value ‘ܸ’ integrates with the
transaction block ‘ܶܤ௜’ to obtain intermediate result and
then zero padded with ‘ܼ�’ to produce the final
MerkleDamgard Hash function ‘ܪܦܯሺሻ’ respectively.

The ‘ܪܦܯሺሻ’ is mathematically formulated as given

below:

ሺሻܪܦܯ = ∑ ௜݂ ∪ ௜ܤܶ ∪ ܼ�௜�௜=ଵ (1)

From (1), ‘ ௜݂’ represents the intermediate
function, ‘ܶܤ௜’ represents the transaction blocks and ‘ܼ�௜’
the zero padding inserted resulting in the MDH function.

Once the MDH function is evaluated, message

authentication codes (MACs) uses session key pairs for

each replica pair. Let us consider replica pair ‘ܽ’ and ‘ܾ’.
Then, the mathematical formulation for MAC evaluation

to perform authentication is as given below:

௜,௝ሻܣሺܪܦܯ → (2) ݆ ݋ݐ ݅ ݉݋ݎ݂ ݐ݊݁ݏ ݇ܿ݋݈ܤ ݊݋݅ݐܿܽݏ݊ܽݎܶ

௝,௜ሻܣሺ ܪܦܯ → (3) ݅ ݋ݐ ݆ ݉݋ݎ݂ ݐ݊݁ݏ ݇ܿ݋݈ܤ ݊݋݅ݐܿܽݏ݊ܽݎܶ

From (2) and (3), ‘ܣ௜,௝’ evaluates the MAC
transaction block sent from ‘݅’ to ‘݆’ whereas ‘ܣ௝,௜’
evaluates the MAC transaction block sent from ‘݆’ to
‘݅’.Each replica shares a secret key with each client that is

used for efficient communication between the replica and

the client and is formulated as given below:

��௞ݐ݁ݎܿ݁ܵ = ∑ ሺܷݎ݁ݏ௜ , ሻ�௜=ଵݐ௜ݕ݁� (4)

From (4), the secret key ‘ܵ݁ܿݐ݁ݎ௞��’ is obtained
for each user (i.e. client) ‘ܷݎ݁ݏ௜’ and assigned with a key
 respectively. The key is ’ݐ‘ ௜’ for each time intervalݕ݁�‘
updated in a periodic manner by the client (i.e. at time t).

If the key updating is not performed by the client, the

replica discards the current key for that client. As a result

the client refreshes the key.

)nput: Transaction Blocks Ǯܶܤ௜ = ,ଵܤܶ ,ଶܤܶ … , �ܤܶ ǯ, Zero Padding Ǯܼ�ǯ, Transaction Data Packets Ǯܦ�௜ = ,ଵ�ܦ ଶ�ܦ , … , ��ܦ ǯ, Vector Ǯܸǯ, User Ǯܷݎ݁ݏ௜ = ଵݎ݁ݏܷ , ,ଶݎ݁ݏܷ … , ௜ݕ݁�ǯ, Key = Ǯ�ݎ݁ݏܷ = ,ଵݕ݁� ଶݕ݁� , … , ǯݐǯ, Time Ǯ�ݕ݁�
Output: Scalable addressability of concurrent transaction

Step 1: Begin Step ʹ: For each Transaction Blocks Ǯܶܤ௜ ǯ Step ͵: For each Transaction Data Packets Ǯܦ�௜ ǯ
Step 4: Measure MerkleDamgard (ash function Ǯܪܦܯሺሻǯ using ȋͳȌ

Step 5: Perform key sharing using (4)

Step 6: End for

Step 7: End for

Step 8: End

Figure-3. MerkleDamgard Hash Replication algorithm.

From the Figure-3 given above the

MerkleDamgard Hash Replication algorithm performs two

important steps. First, for each transaction blocks and data

packets, MerkleDamgard Hash function is evaluated.

Followed by this, the second step performs key sharing for

efficient data packet communication between the users

with the objective of improving the scalability which in

turn reduce the fault occurrence significantly.

3.3 Design of clock synchronization with berkeley

Clock Synchronized with Berkeley algorithm

uses the optimized different data grid sequences to attain

QoS based fault tolerant dynamic replication. A clock ‘ܥ’
is said to be non-faulty if there said to exists a threshold

(i.e. drift value for non-faulty clock) ‘�ଵ’ such that for
time ‘ݐଵ’ and ‘ݐଶ’ with different data grid sequences

ܩܦ‘ ௜ܵ’ attain QoS based fault tolerant and is
mathematically formulated as given below:

 ͳ − �ଵ < ஼ ሺ�మሻ− ஼ ሺ�భሻ�మ− �భ < ͳ + �ଶ (5)

The error rate is measured by each user on the

basis of its own clock synchronized with MDH function.

Two clocks ‘ܥଵ’ and ‘ܥଶ’ of two users ‘ܷݎ݁ݏଵ’ and
 if ’ݐ‘ ଶ’ are said to be synchronized at timeݎ݁ݏܷ‘
ሻ[ݐ]ଵݎ݁ݏଵሺܷܥ‘ − ሻ[ݐ]ଶݎ݁ݏଶሺܷܥ < �’.From this, set ‘݊’
clocks are said to be synchronized with ‘݊’ users if the
following condition is said to be satisfied.

ሻ[ݐ]ଵݎଵሺܷܵ݁ܥ ݂݅ − ሻ[ݐ]ଶݎ݁ݏଶሺܷܥ … … . ሻ[ݐ]�ݎ݁ݏሺܷ�ܥ < � (6)

From (6), ‘ܥଵ’ and ‘ܥଶ’ are clock synchronized
with user ‘ܷݎ݁ݏଵ’ and ‘ܷݎ݁ݏଶ’ respectively for a specified
constant ‘�’. Due to the non-zero drift values of all clocks,

the clock rate does not remained synchronized without

certain periodic cycle. So, in the proposed mechanism, the

users periodically resynchronize clock values in order to

maintain an efficient global time with the objective of

reducing the error rate.

The periodical resynchronization of clock values

for each user with respect to global time is performed

between successive grid sequences is called the

resynchronize clock intervals (i.e. a constant) denoted by

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6025

 ’ଵݎ݁ݏܷ‘ ଴’ when userݐ‘ Let us consider a time .’ܫܥܴ‘
began its process, then the time of ‘݅�ℎ’ resynchronize
value is then formulated as given below:

௜ݐ = ଴ݐ + (7) ܫܥܴ݅

Let ‘ܽ’ and ‘ܾ’ be two non-faulty nodes and ‘ݐ’
be the clock time for node ‘ܽ’. Then, when a node ‘ܽ’

wants to broadcast transaction block to node ‘ܾ’ at time
 ሻ’ reaches ‘ܾ’afterݐሺ�ܥ‘ ሻ’, this transaction blockݐሺ�ܥ‘
certain amount of time with a delay ‘ܦ’. Therefore, the
transaction block message is delivered to node ‘ܾ’ with a
delay and is formulated as given below:

 ሺ ௜ܶ , ܽ, ܾሻ → ሻݐሺ�ܥ + (8) ܦ

)nput: Threshold Ǯ�ଵǯ, Time Ǯݐଵ, ݐଶǯ, Data Grid Sequences Ǯܵܩܦ௜ ܩܦ = ଵܵ, ,ଶܵܩܦ … , �ܵܩܦ ǯ, User Ǯܷݎ݁ݏ௜ = ,ଵݎ݁ݏܷ ,ଶݎ݁ݏܷ … , �ݎ݁ݏܷ ǯ, Transaction Blocks Ǯܶܤ௜ = ,ଵܤܶ ,ଶܤܶ … , ǯ�ܤܶ
Output: Minimized error rate during transaction block delivery between

users

Step 1: Begin

Step 2: For each data grid sequences ܵܩܦ௜

Step 3: Measure QoS based fault tolerant using (5)

Step 4: End for

Step 5: For each user ܷݎ݁ݏ௜

Step 6: Measure clock synchronization using (6)

Step 7: Measure resynchronize clock intervals using (7)

Step 8: Deliver transaction blocks between nodes using (8)

Step 9: End for

Step 10: End

Figure-4. Clock synchronization algorithm.

This error is small because of the non-faulty

nature of the nodes and the communication between the

broadcast of transaction block is established. Therefore,

the error rate during the broadcast of transaction block is

reduced in a significant manner. Figure-4 shows the clock

synchronization algorithm for efficient transaction block

delivery between users. As shown in the figure 4, the

Clock Synchronization algorithm performs two important

steps. During the first step for each data grid sequences,

QoS based fault tolerant value is measured. Followed by

which for each user in the second step, clock

synchronization and resynchronize clock intervals are

measured. Finally, transaction blocks between users are

delivered. This QoS based fault tolerant clock

synchronization helps in reducing the error rate.

3.4 Design of berkeley algorithm

Finally, Berkeley algorithm in MDCS-FT

mechanism is more suitable for easily identifying the fault

with time server. Time server in MDCS-FT Mechanism

periodically fetches the time from all the clients and

averages the results on cloud zone to secure data objects

replication in cloud data grid by removing the fault.

MDCS-FT Mechanism with Berkeley algorithm highlights

the work with fault tolerance and also improves the cloud

service provisioning. The client whose clock differs by a

value outside of a given tolerance in MDCS-FT

Mechanism is disregarded as faults. The users involved in

the synchronization each execute a time daemon process

that is responsible for delivering the transaction block to

other users. One of these users is designated to be the

master. The others users are referred to as the slaves. The

master user polls each node’s periodically, asking it for the
time. When all the results are obtained the master user

computes the average time in addition to its own time and

correspondingly decides the faulty and non-faulty nodes

with time server. Figure-5 shows the Berkeley Clock

Synchronized model.

Figure-5. Berkeley clock synchronized model.

Let us consider three nodes (i.e. users) ‘ܷݎ݁ݏଵ’
have timestamp ‘ܶ ଵܵ’ ‘ʹ: ʹͷ’, ‘ܷݎ݁ݏଶ’ have timestamp
‘ܶܵଶ’ ‘ʹ: Ͳͷ’ and ‘ܷݎ݁ݏଷ’ have timestamp ‘ܶܵଷ’ ‘ʹ: Ͷͷ’
respectively. As shown in the figure, with the Berkeley

Clock Synchronized model, the highest timestamp with

‘ʹ: ʹͷ’ is elected as the master user (i.e. ‘ܷݎ݁ݏଵ’). The
other two nodes (i.e. ‘ܷݎ݁ݏଶ’ and ‘ܷݎ݁ݏଷ’) are the slave
users. The master user ‘ܷݎ݁ݏଵ’sends a synchronize query
to two other users ‘ܷݎ݁ݏଶ’ and ‘ܷݎ݁ݏଷ’. As a response the
two slave users sends the time stamp to the master user.

The master user performs the averages the results on the

cloud zone using three time stamps (i.e. of ‘ܷݎ݁ݏଶ’ and
 ଵ’) and is formulatedݎ݁ݏܷ‘ ଷ’ and its own time stampݎ݁ݏܷ‘

as given below:

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6026

ܵܤ = ଶሻݎ݁ݏሺܷ ݌݉ܽݐݏ݁݉݅ܶ] + ଷሻݎ݁ݏሺܷ ݌݉ܽݐݏ݁݉݅ܶ + ଵሻ/͵] (9)ݎ݁ݏሺܷ ݌݉ܽݐݏ݁݉݅ܶ

From (9), the Berkeley Synchronized value is

obtained using the timestamp of

,ଵݎ݁ݏܷ‘ ଷ’. The three synchronized valuesݎ݁ݏܷ ݀݊ܽ ଶݎ݁ݏܷ
are then averaged (i.e. (2.25 + 2.05 + 2.45)/3 = 2.25). This

average value forms the threshold ‘ܶℎ’. The value lesser

than ‘ܶℎ’ is considered as the non-faulty node whereas the

value greater than ‘ܶℎ’ is considered as the faulty node
and disregarded from the network. Figure-6 shows the

Berkeley Synchronized algorithm.

)nput: Users ǮUseri = Userଵ, Userଶ , … , Usernǯ, Timestamp ǮTSi = TSଵ , TSଶ, … , TSnǯ, Threshold ǮThǯ
Output:

Step 1: Begin

Step 2: For each users Useri
Step 3: For each timestamp TSi
//Identify master user and slave user

Step 4: Measure timestamp

Step 5: Assign highest timestamp user as master user

Step 6: Send synchronize query by master user to slave users

Step 7: Slave users reply by sending their timestamp

Step 8: Measure average timestamp (i.e. Thusing (9))

Step 9:)f ǮThǯ <Timestamp ሺUseriሻ

Step 10: User is a non-faulty node

Step 11: End if Step ͳʹ:)f ǮThǯ >Timestamp ሺUseriሻ

Step 13: User is a faulty node

Step 14: Disregard Useri
Step 15: End if

Step 14: End for

Step 15: End for

Step 16: End

Figure-6. Berkeley Synchronized algorithm.

As shown in the above Figure, the Berkeley

Synchronized algorithm performs the secure data objects

replication in cloud data grid by removing the faulty nodes

in the cloud zone. This is achieved through Berkeley

Synchronized value. This is turn efficiently identifies the

faulty node and disregards them resulting in the reduced

transmission delay.

4. Experimental settings

In this section, the investigational setup for

designing MDCS-FT Mechanism is explained and the

experiments were conducted on using GridSim simulator

performed on Cloud environment. The GridSim simulator

performed on Cloud environment offers distinct resource

configurations for several virtual machine instances. Each

virtual machine instance type is configured with a specific

amount of memory, CPUs, and local storage. The MDCS-

FT Mechanism is equipped with two quad core 2.33-2.66

GHz Xeon processors (8 cores total), 7 GB RAM, and

1690 GB local disk storage.

The performance evaluation tests aimed at

comparing the Enhanced Dynamic Hierarchical

Replication in Data Grid (EDHR-DG) [1] and Optimized

Approach on Cloud Storage (OACS) [2] with the proposed

MerkleDamgard Clock Synchronized based Fault Tolerant

(MDCS-FT) mechanism. So to study the MDCS-FT

mechanism using the simulator, we proposed a simulation

environment that has the following parameters: the

number of users varies between 20 and 140 with

transaction block size of ranging from 5 to 35, the

transaction data packets is equal to 5 packets to 35 packets

with packet size of l pieces of data with a size 10 MB. The

following parameters including scalability, error rate, fault

tolerance rate and transmission delay in cloud serviceare

evaluated.

5. DISCUSSION

The MerkleDamgardClock Synchronized based

Fault Tolerant (MDCS-FT) mechanism is compared

against with the existing Enhanced Dynamic Hierarchical

Replication in Data Grid (EDHR-DG) [1] and Optimized

Approach on Cloud Storage (OACS) [2].The experimental

results using Grid Sim simulator in Cloud environment are

compared and analysed through table and graph form

given below.

5.1 Impact of scalability

Scalability is one of the most important standard

metrics used to measure the performance of fault tolerant

systems for computational data grid in cloud environment.

Scalability is mathematically formulated as given below;

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6027

ܵ = ሺܶܤ ∗ ܶ݅݉݁�஻ሻ (10)

From (10), scalability ‘ܵ’ is measured on the
basis of the product of total number of transaction blocks

submitted ‘ܶܤ’ to total amount of time necessary to
complete the transaction block ‘ܶ݅݉݁�஻’. Scalability is
used to measure the ability of the computational data grid

to accommodate the transaction blocks.

Table-1. Tabulation for scalability.

No. of Transaction

Block (TB)

Scalability (ms)

MDCS-

FT

EDHR-

DG
OACS

5 0.68 0.89 0.96

10 0.75 0.94 1.00

15 0.82 1.01 1.07

20 0.85 1.04 1.10

25 0.91 1.10 1.16

30 0.99 1.20 1.26

35 1.10 1.31 1.37

Figure-7. Measure of scalability.

To support transient performance, in Table-1 we

apply a MerkleDamgard Hash Replication algorithm and

comparison made with two other existing methods EDHR-

DG [1] and OACS [2]. From the above tabulation,

scalability refers to the number of transaction blocks

addressed at minimum time interval. Figure-7 show that

the MerkleDamgard Clock Synchronized based Fault

Tolerant (MDCS-FT) mechanism provides higher amount

of scalability when compared to EDHR-DG [1] and OACS

[2]. With the application of MerkleDamgard Hash

Replication algorithm, MerkleDamgard Hash function

evaluates transaction blocks in an efficient manner using

intermediate function and zero padding. This in turn

authenticates transaction data packets using Message

Authentication Code using session key pairs for each

replica pair helps to improve the number of transaction

blocks being addressed and therefore the scalability rate

for computational data grid is improved using MDCS-FT

mechanism by 23.27% compared EDHR-DG [1] and

30.52% compared to OACS [2] respectively.

5.2 Impact of error rate

Error rate is measured on the basis of the

difference between the users’ in different data grid

sequences to be synchronized with the number of users

synchronized.

ܴܧ = ∑ ௜ݎ݁ݏܷ − ௜=ଵ�݀݁ݖ݅݊݋ݎℎܿ݊ݕݏ ݏݎ݁ݏݑ ݂݋ ݋ܰ (11)

From (11), the error rate ‘ܴܧ’ is measured based
on the number of users in different grid sequences ‘ܷݎ݁ݏ௜’.
When the error rate is lower, the method is said to be more

efficient and it is measured in terms of megabytes (MG).

Table-2. Tabulation for error rate.

No. of users
Error rate (MB)

MDCS-FT EDHR-DG OACS

20 23.1 33.9 41.5

40 38.7 46.3 53.8

60 49.6 57.2 66.7

80 55.8 63.4 72.9

100 69.3 77.1 85.6

120 78.4 86.2 94.7

140 82.3 90.1 99.6

Figure-8. Measure of error rate.

The targeting results of error rate using MCDS-

FT mechanism with two state-of-the-art methods [1], [2]

in Table-2 presented for comparison based on the number

of users for measuring fault tolerance in cloud

environment. From Figure-8, it is evident that the error

rate is reduced using the proposed MDCS-FT mechanism.

The Clock Synchronization for different users with

optimized data grid sequences results in the reduced error

rate in MDCS-FT mechanism. With the application of

Clock Synchronization ‘݊’ clocks are said to be
synchronized with ‘݊’ users, resulting in the minimization

of error rate. At the same time, in MDCS-FT mechanism,

the users periodically resynchronize clock values due to

the non-zero drift values of all clocks the efficient

separation of single event detection to multiple event

detection is made in an efficient and therefore minimizing

the error rate. With the resynchronized clock values, an

efficient global time is maintained and sends the results of

resynchronized clock values between successive grid

sequences. MCDS-FT mechanism reduces the error rate

by 18.00% compared to EDHR-DG [1] and 35.58%

compared to OACS [2] respectively.

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6028

5.3 Impact of transmission delay

The transmission delay is the time taken to

transmit the transaction block with respect to the data

packets ready for transmission.

ܦܶ = ∑ ௜�ܦ ∗ ܶ݅݉݁ ሺܦ�௜ሻ�௜=ଵ (12)

From (12), the transmission delay ‘ܶܦ’ is
measured using the number of data packets ready for

transmission ‘ܦ�௜’ and time for each transaction block
‘ܶ݅݉݁ ሺܶܤ௜ሻ’ respectively. Lower the transmission delay,
more efficient the method is said to be.

Table-3. Tabulation for transmission delay.

Data Packets

(DP)

Transmission delay (ms)

MDCS-FT EDHR-DG OACS

5 13.1 14.09 16.3

10 21.8 23.11 26.11

15 35.6 37.09 40.12

20 41.3 43.06 46.16

25 59.4 61.07 64.17

30 68.3 71.06 74.15

35 74.2 76.05 79.14

Figure-9. Measure of transmission delay with respect

to data packets.

As listed in Table-3, MDCS-FT mechanism

measures the transmission delay on cloud zone to secure

data objects replication in cloud data grid with respect to

data packets. It is measured in terms of milliseconds (ms).

Figure-9 presents the variation of transmission delay with

respect to data packets to measure fault tolerant dynamic

replication. All the results provided in Figure-9 confirm

that the proposed MDCS-FT mechanism significantly

outperforms the other two methods, EDHR-DG [1] and

OACS [2]. The transmission delay is reduced in the

MDCS-FT mechanism using the Berkeley Synchronized

algorithm. With the application of Berkeley Synchronized

algorithm, execute a time daemon process that is

responsible for delivering the transaction block to other

users. Followed by this, a master slave block is established

using the Berkeley Synchronized value. This master slave

block in MDCS-FT mechanism in turn reduces the

transmission delay by 4.47% compared to EDHR-DG [1].

As a result, secure data objects replication is performed in

cloud data grid by removing the faulty nodes in the cloud

zone in the MDCS-FT mechanism using the threshold

value. The synchronized value greater than the threshold

are disregarded as faulty nodes. This efficient segregation

of fault and non-faulty nodes in MDCS-FT mechanism

helps in reducing the transmission delay by 13.13%

compared to OACS [2].

6. CONCLUSIONS

In this paper, MerkleDamgard Clock

Synchronized based Fault Tolerant (MDCS-FT)

mechanism is provided based on the Clock Synchronized

with Berkeley algorithm for efficient cloud service

improves the scalability and fault tolerance rate in

computational data grid. As the mechanism uses

MerkleDamgard Hash Replication algorithm in a dynamic

manner, it improves the scalability through efficient

delivery of transaction block using hash function. Finally,

the Berkeley Synchronized algorithm is designed that

improved the fault tolerance rate in a significant manner.

Different data packets with varied transaction block sizes

on computational data grid in cloud environment analyze

the faulty and non-faulty nodes. A series of simulation

results are performed to test the scalability, error rate,

transmission delay and fault tolerance rate and therefore to

measure the effectiveness of MCDS-FT mechanismwith

an improvement of scalability by 26.90% and reduces the

error rate by 26.79% compared to state of the art works.

REFERENCES

[1] NajmeMansouria, Gholam Hosein Dastghaibyfard,

“Enhanced Dynamic Hierarchical Replication and

Weighted Scheduling Strategy in Data Grid,” Journal

Parallel Distributed Computing, Elsevier Journal,

2013

[2] Bo Dong, Qinghua Zheng, Feng Tian, Kuo-Ming

Chao, RuiMaa, Rachid Anane, “An optimized

approach for storing and accessing small files on

cloud storage,” Journal of Network and Computer

Applications, Elsevier Journal, 2012

[3] Flavio Lombardi, Roberto Di Pietro, “Secure

virtualization for cloud computing”, Elsevier, Journal

of Network and Computer Applications, volume 34,

issue 4, july 2011, pp. 1113–1122.

[4] Nazanin Saadat, Amir MasoudRahmani, “PDDRA: A

new pre-fetching based dynamic data replication

algorithm in data grids”, Elsevier, Future Generation

Computer Systems, volume 28, issue 4, April 2012,

pp. 666-681.

[5] Zhuo Lu, Wenye Wang, and Cliff Wang,

“Camouflage Traffic: Minimizing Message Delay for

Smart Grid Applications under Jamming”, IEEE

 VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6029

transactions on dependable and secure computing,

volume 12, issue 1, January/February 2015, pp. 31-44.

[6] Taeho Jung, Xiang-Yang Li, and Meng Wan,

“Collusion-Tolerable Privacy-Preserving Sum and

Product Calculation without Secure Channel”, IEEE

transactions on dependable and secure computing,

volume 12, issue 1, January/February 2015, pp. 45-57.

[7] Dong Yuan, Xiao Liu, and Yun Yang, “Dynamic On-

the-Fly Minimum Cost Benchmarking for Storing

Generated Scientific Datasets in the Cloud”, IEEE

transactions on computers, volume 64, issue 10,

October 2015, pp. 2781-2795.

[8] Chien-An Chen, Myounggyu Won, RaduStoleru, and

Geoffrey G. Xie, “Energy-Efficient Fault-Tolerant

Data Storage and Processing in Mobile Cloud”, IEEE

transactions on cloud computing, volume 3, issue 1,

January/march 2015, pp. 28-41.

[9] SmithaSundareswaran, Anna C. Squicciarini, and Dan

Lin, “Ensuring Distributed Accountability for Data

Sharing in the Cloud”, IEEE transactions on

dependable and secure computing. Vol. 9, issue 4,

July/august 2015, pp. 556-568.

[10] VivekNallur, Rami Bahsoon, “A Decentralized Self-

Adaptation Mechanism For Service-Based

Applications in The Cloud”, IEEE transactions on

software engineering, volume 39, issue 5, may 2013,

pp. 591-612.

[11] JasmaBalasangameshwara, NedunchezhianRaju, “A

hybrid policy for fault tolerant load balancing in grid

computing environments”, Journal of Network and

Computer Applications, Elsevier Journal, volume 35,

2012, pp. 412-422.

[12] Marcela Castro-León, Hugo Meyer, Dolores Rexachs,

Emilio Luque, “Fault tolerance at system level based

on RADIC architecture”, Journal of Parallel and

Distributed Computing, Elsevier Journal, volume 86,

2015, pp. 98-111.

[13] J. W. Larsona, M. Heglanda, B. Hardinga, S.

Robertsa, L. Stalsa, A. P. Rendellb, P. Strazdinsb, M.

M. Alib, C. Kowitzd, R. Nobesc, J. Southernc, N.

Wilsonc, M. Lic, Y. Oishic, “Fault-Tolerant Grid-

Based Solvers: Combining Concepts from Sparse

Grids and MapReduce”,International Conference on

Computational Science, ICCS 2013, volume 18, pp.

30-139.

[14] BoubakerBoulekrouchea, Nafaâ Jabeurb, Zaia

Alimazighia, “An Intelligent ETL Grid-Based

Solution to Enable Spatial Data Warehouse

Deployment in Cyber Physical System Context”, The

12th International Conference on Mobile Systems and

Pervasive Computing, Elsevier journal, volume 56,

2015, pp. 111-118.

