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ABSTRACT  

A new family of almost four-phased sequences with perfect periodic autocorrelation function is proposed. It 
extends the array of the known almost four-phased sequences both for the periods’ grid and for the structure via a slight 
increase of the peak-factor, the value of which is not greater than two. The generation algorithm for the sequences of this 
family is developed and can be easily implemented on any standard configuration computer. 
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INTRODUCTION 

Today the operational principle of the greatest 
part of information technology complexes is based on the 
periodic sequences (hereafter the sequences) with specific 
sets of numerical characteristics. Among these 
characteristics, very important are the following [1]: 
periodic autocorrelation functions (PACF), alphabet, 
period, weight (the number of non-zero symbols on the 
period), and peak-factor (a ratio of the period to the weight 
of a sequence). 

The sequences with perfect PACF are in great 
demand [2]. PACF is usually called perfect if the values of 
its sidelobes are constant and equal to zero [3]. However, 
the condition for the PACF to be perfect brings some 
severe constraints for the problem of the synthesis of 
sequences which satisfy this condition. For example, only 
one binary sequence with perfect PACF is known and it is 
supposed that no other one exists [4]. 

The first solution for the problem of the synthesis 
of the sequences with perfect PACF is the usage of the 
multiphase alphabets. The following papers are ones of the 
most known in this direction: [5]-[7]. A considerable 
limitation of these families of the sequences is the linear 
dependence of the quantity of the phases on the periods of 
the synthesized sequences. Also there exists the paper [8], 
where the generalized method for the synthesis of the 
sequences with perfect PACF is proposed. The main 
drawback of this case is the limited number of the 
multiphase sequences with perfect PACF. 
 The most popular method to eliminate the 
mentioned drawback is the switching from the multiphase 
sequences to the almost multiphase ones. The examples of 
such sequences are: 
 
 almost four-phased Lee sequences with one zero 

symbol [9]; 
 almost eight-phased Lüke sequences with two zero 

symbols [10]; 
 almost multiphase Krengel sequences [11][12]; 
 ternary Ipatov sequences [13]; 
 besides, several families of the almost multiphase 

sequences are synthesized by the authors [14]-[15]. 
 

 However, the known families cannot satisfy the 
continually growing demand on the sequences with such 
characteristics. Thus, the aim of this paper is the synthesis 
of a new family of the sequences with perfect PACF over 
the almost four-phased alphabet. 
 
PRELIMINARIES 

Let GF(qm) be the extended Galois field with a 
characteristic q = px where p - a prime number, and s  – an 
arbitrary natural number. Now over GF(qm) we define q-
adic M-sequence denoted by {dn}. Its period equals qm - 1 
that coincides with the number of non-zero elements of the 
field. 

If  – is a primitive element of the fields GF (q) 
then for each devisor b|(q - 1) there exists the set of 
residue classes ,rH  which consist of (q – 1)/b elements 

and are defined as follows: 
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Let us associate some symbol of the ternary 
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coding rule: 
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The sequence {yn}. defined in Equation. (1), is 

generated in such way that its n-th position value is in, if 
the corresponding n-th symbol of the M-sequence dn is 
owned by classes H0, H8, H9, or H12; - in, if dn is owned by 
H1, H2, H5, or H7 else yn equals zero. 

Now we find necessary and sufficient conditions 
for the parameters of the extended Galois field GF(qm) for 
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which the generated almost four-phased sequences {yn} 
have perfect PACF if the following condition is met: 
 
NECESSARY AND SUFFICIENT CONDITIONS OF 
EXISTENCE 

Based on the results, provided by the paper [16] 
of the authors, the sequence  ny  has perfect PACF if the 

following condition is met: 
 

 7 2 mod 4 ,h 
                                                               (2)
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Let us use the Equation. (2) to find the necessary 

condition of existence for the sequences which are 
generated by Equation. (1). 
 
THEOREM 1 

In order for the almost four-phased sequence {yn} 
to have perfect PACF, it is necessary that the extension m  
of the Galois field is congruent: m   2(mod 4). 
 
PROOF 

For the characteristic of the field q  the following 

condition must be satisfied: )14(mod01 q . That is q 

can be represented as follows: q=14c+1 where c – such a 
natural number that q is the prime power. As a result: 
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The necessary condition for Equation. (3) to be 

hold is the solubility of the following congruence for the 
extension: m   2(mod 4). That completes the proof. 

For convenience, let us assume the value of the 
extension: m   2. Hence, we obtain the corresponding 
value of h =q+1=14c+2 where c -a natural number. Now 
we find the sufficient condition of existence for the almost 
four-phased sequences with perfect PACF over GF(q2). 
 
THEOREM 2 

In order for PACF of {yn} ny  over GF(q2) to be 

perfect, it is sufficient that the value of c  in equation h 
=14c+2  is an even integer. 
 
PROOF 

It follows from Equation. (3) that: 
 

   7 2 7 7 1 2 mod 4 .h c     

If d – an odd number, then the equation in the 
brackets (7c+1) is even, and the left part of the congruence 
2.7(7c+1) becomes a multiple of four, that is: 
 

   2 7 7 1 0 mod 4 ,c    

 
that contradicts the necessary condition of 

existence. Thus, the solubility of the presented congruence 
requires the equation (7c+1) to have odd value, that is c 
must be an even number. This completes the proof. 
 
PROPERTIES OF THE FAMILIY’S SEQUENCES 

Now we enumerate the basic properties of the 
obtained almost four-phased sequences with perfect 
periodic autocorrelation function. 
 
PROPERTY 1 

The period of sequence {yn} equals 7(q+1).  
 
PROPERTY 2 

The weight of sequence {yn} equals 4q. 
 
PROPERTY 3 

The peak-factor pf of sequence {yn} approaches 
1.75 with the growth of the period. 

Considering these properties, we obtained Table-
1 where the values of some parameters that satisfy the 
necessary and sufficient conditions of existence are 
presented. 

The proposed family of the sequences 
considerably expands the periods’ grid of Lee-sequences. 
But even for those cases, where the periods are the same, 
the sequences of the proposed family have different 
structure. 
 
THE GENERATION ALGORITHM 
 Thus, the generation algorithm of the obtained 
almost four-phased sequences with perfect PACF over the 
extended Galois fields GF(q2) is determined by the 
following sequence of operations: 
 
1. Choose such a natural number c that  q = 14c+1 can 

be represented as q=px where p – a prime number and 
s – a natural number; 

2. Find the first 4q symbols of the M-sequence over 
GF(q2) 

3. Construct 14 residue classes over GF(q) 
4. Generate the desired sequence {yn} via the coding rule 

(1). 
 
 Let us demonstrate how the algorithm operates 
with the following example. 
 
EXAMPLE 

We generate the first almost four-phased 
sequence   with perfect PACF from Table-1: 
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Table-1. The examples of the parameters of the synthesized sequences with perfect PACF. 
 

№ p s m Period pf~ 
 29 1 2 210 1.81 
 113 1 2 798 1.77 
 13 2 2 1190 1.76 
 197 1 2 1386 1.76 
 281 1 2 1974 1.76 
 337 1 2 2366 1.76 
 421 1 2 2954 1.75 
 449 1 2 3150 1.75 
 617 1 2 4326 1.75 
 673 1 2 4718 1.75 
 701 1 2 4914 1.75 
 3 6 2 5110 1.75 
 757 1 2 5306 1.75 
 29 2 2 5894 1.75 
 953 1 2 6678 1.75 
 1009 1 2 7070 1.75 
 1093 1 2 7658 1.75 
 1289 1 2 9030 1.75 
 1373 1 2 9618 1.75 
 1429 1 2 10010 1.75 
 1597 1 2 11186 1.75 
 41 2 2 11774 1.75 
 1709 1 2 11970 1.75 
 43 2 2 12950 1.75 
 1877 1 2 13146 1.75 
 1933 1 2 13538 1.75 
 2017 1 2 14126 1.75 
 2129 1 2 14910 1.75 
 2213 1 2 15498 1.75 
 2269 1 2 15890 1.75 
 2297 1 2 16086 1.75 
 2381 1 2 16674 1.75 
 2437 1 2 17066 1.75 
 2521 1 2 17654 1.75 
 2549 1 2 17850 1.75 
 2633 1 2 18438 1.75 
 2689 1 2 18830 1.75 
 2801 1 2 19614 1.75 
 2857 1 2 20006 1.75 
 2969 1 2 20790 1.75 
 3109 1 2 21770 1.75 
 3137 1 2 21966 1.75 
 3221 1 2 22554 1.75 
 3361 1 2 23534 1.75 
 3389 1 2 23730 1.75 
 3529 1 2 24710 1.75 
 3557 1 2 24906 1.75 
 3613 1 2 25298 1.75 
 3697 1 2 25886 1.75 
 4201 1 2 29414 1.75 

 
1. We choose   for which   
 
2. We find the first 210 symbols of the M-sequence   over   

2, 16, 17, 13, 18, 25, 18, 12, 13, 21, 15, 7, 16, 14, 23, 0, 
21, 17, 10, 28, 7, 14, 11, 11, 7, 1, 6, 20, 9, 16, 7, 27, 16, 2, 
5, 15, 5, 13, 2, 1, 9, 10, 27, 20, 8, 0, 1, 16, 6, 11, 10, 20, 
24, 24, 10, 18, 21, 12, 17, 27, 10, 22, 27, 7, 3, 9, 3, 2, 7, 
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18, 17, 6, 22, 12, 28, 0, 18, 27, 21, 24, 6, 12, 26, 26, 6, 5, 
1, 13, 16, 22, 6, 19, 22, 10, 25, 17, 25, 7, 10, 5, 16, 21, 19, 
13, 11, 0, 5, 22, 1, 26, 21, 13, 4, 4, 21, 3, 18, 2, 27, 19, 21, 
23, 19, 6, 15, 16, 15, 10, 6, 3, 27, 1, 23, 2, 24, 0, 3, 19, 18, 
4, 1, 2, 14, 14, 1, 25, 5, 7, 22, 23, 1, 8, 23, 21, 9, 27, 9, 6, 
21, 25, 22, 18, 8, 7, 26, 0, 25, 23, 5, 14, 18, 7, 20, 20, 18, 
15, 3, 10, 19, 8, 18, 28, 8, 1, 17, 22, 17, 21, 1, 15, 19, 5, 
28, 10, 4, 0, 15, 8, 3, 20, 5, 10, 12, 12, 5, 9, 25, 6, 23, 28; 
3. We construct 14 residue classes over   
 
4. We generate the desired sequence: 
+, i, +, -i, –, 0, +, i, +, 0, +, 0, +, -i, –, 0, 0, -i, 0, -i, 0, -i, +, 
i, 0, i, –, 0, 0, i, 0, -i, +, i, +, i, –, i, –, -i, 0, 0, –, 0, 0, 0, –, -
i, +, -i, 0, 0, –, -i, 0, i, 0, -i, +, -i, 0, 0, –, 0, 0, 0, 0, -i, 0, -i, 
+, -i, 0, -i, –, 0, –, i, 0, i, +, -i, 0, 0, +, -i, –, -i, +, 0, –, 0, 0, 
0, 0, i, 0, 0, 0, i, +, 0, 0, -i, –, 0, +, 0, +, 0, 0, -i, 0, 0, 0, 0, –
, i, –, 0, 0, i, 0, -i, –, i, +, 0, +, 0, –, -i, +, i, +, 0, 0, 0, +, 0, 
+, i, +, i, +, 0, +, 0, 0, i, –, 0, +, 0, 0, -i, 0, i, 0, 0, 0, -i, 0, 0, 
0, 0, 0, -i, –, -i, +, 0, 0, 0, +, i, 0, 0, 0, 0, –, i, 0, -i, –, 0, +, 
0, +, -i, 0, i, +, 0, 0, 0, –, 0, 0, 0, –, 0, +, i, –, 0, 0, -i, +, i. 
 

The one generated in the example is almost a 
four-phased sequence with perfect PACF has the period 
210, its weight equals 116, and peak-factor is 
approximately equal to 1.81. 
 
CONCLUSIONS 
 In this paper we proposed a new family of almost 
four-phased sequences with perfect periodic 
autocorrelation function. The distinctive features of this 
family are: 
 
1. The grid of the periods which extends the array of the 

known almost four-phased sequences with perfect 
PACF; 

2. The structure which allows to increase the number of 
isomorphic almost four-phased sequences with perfect 
PACF for the known periods due to a slight growth of 
the peak-factor’s value; 

3. The generation algorithm which can be easily 
implemented on any standard configuration computer. 

 
 The results presented in the paper are verified by 
the great amount of the examples by means of computer-
aided simulation with the help of the specially developed 
software complex. One of these examples is included in 
the paper. 
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