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ABSTRACT 

Sustainability, the ability of humans to live within our means, becomes a major concern for engineers and 
designers now a day’s. Engineering optimization, which uses techniques of selecting best elements from set of alternatives 
to achieve design goals, is one means for sustainability. Structural topology optimization, which is one type of engineering 
optimization, deals with finding optimal layout of a structure through optimal material distribution with a given design 
domain. Topology optimization problems have been formulated and solved by means of compliance minimization. There 
are some efforts for formulating and solving a topology optimization problem with stress constraints. Though formulating 
an optimization problems with stress constraints seems acceptable and reliable from engineering point of view it has been 
facing challenges associated with high nonlinear local stress constraints and design variables. In this paper an optimization 
problem is formulated to minimize volume based on von mises stress theory subjected to stress constraints for two 
dimensional problems. A mathematical model which takes into consideration the singularity phenomenon associated with 
the design variables and stress constraints is developed. The results of the model is compared to the results of the 
compliance based approach by solving two numerical cases. The numerical results shows that the proposed method has 
comparable efficiency and accuracy by having less transition elements and securing elements in the design domain free 
from stress failure.  
 
Keywords: topology optimization, stress constraint, stress relaxation, compliance. 
 
INTRODUCTION 

Topology optimization is a mathematical 
approach which seeks optimal material layout within a 
given design domain for a given set of boundary and 
loading conditions. It includes determination of 
connectivity, geometries of cavities and location of voids 
in the design domain. Unlike the other types of 
optimization methods used in structural optimization 
(Grandhi 1986, Birker 1992), in topology optimization 
problem, the number of holes, shapes, and bodies are not 
decided prior to the optimization process. 

Most of the researches in this area are focused on 
the formulation and solution of an optimization problem 
by compliance minimization (Rozvany 2009, Bruggi and 
Duysinx 2012). Though, the method get popular in 
structural topology optimization, it has some drawbacks 
including unable to consider multiple loading cases, 
variation of results with the amount of material to be 
distributed and unfeasibility of the final result(París 2010). 
For designing structures with ductile materials, stress is 
often used as the solely concerned objective or constraint 
function in the studies of optimal topology design of 
continuum structures. A research on formulation and 
solution of topology optimization to include stress 
concentration have been going on since the last three 
decades (Guo, Zhang et al. 2014, Cai and Zhang 2015). 

Different approaches and algorithms have been 
suggested for problem formulation and updating the 
design variables in the optimization process. Optimality 
criteria method, convex linearization, method of moving 
asymptotes, successive linearization method are among the 
algorithms used for updating design variable. 
Homogenization method (Kikuchi 1991),Evolutionary 

Structural Optimization (ESO) (Zhou and Rozvany 2001, 
Xie and Huang 2010, Zuo and Xie 2014) and Bi-
directional Evolutionary Optimization (BESO) (Querin, 
Steven et al. 1998, Huang and Huang 2011, Deaton and 
Grandhi 2014, Zhao 2014), Level- Set Method (Wang, 
Xiaoming et al. 2003, Guo, Zhang et al. 2011, James, Lee 
et al. 2012) and Solid Isotropic Material with Penalization 
(SIMP) (Bendsoe 1989, Zhou and Rozvany 1991, Xie and 
Steven 1993, Holmberg, Torstenfelt et al. 2013) are 
among the approaches used for problem formulation. 
Among the approaches for problem formulation the SIMP 
approach is the common one due to its conceptual 
simplicity and high computational efficiency (Deaton and 
Grandhi 2014). 

Most of the researches develped cosiders the 
realxation of the design variables only which will let the 
opmization to loose a controll over the singularity 
phenomenon associated with the stress values of the void 
elements(París 2010, Luo, Wang et al. 2013). The main 
aim of this paper is to formulate a stress based topology 
optimization subjeted to relaxed stress constraint and 
design varialble based on SIMP approach for ductile 
material based designs. 
 
PROBLEM FORMULATION   

The optimization problem is stated to minimize 
the volume of the structure subjected to stress constraints 
using a power law approach as shown in Equation 1. The 
problem is formulated using von mises stress failure 
theory, where failure in a material occurs when the von 
mises stress induced in the material exceeds yield strength 
of a material. 
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      (1) 

 
 

The stress constraint is relaxed by an approach 
suggested by (Duysinx .P 1998) to avoid the singularity 
phenomenon associated with the discontinuity of the 
constraint function due to the removal of elements as 
shown in Equation. 2 
 

       (2) 
 

  = Relaxation parameter having a value [0.001 – 0.1] 

 
For relating the macro stress levels to the micro stress 
levels, a local stress interpolation proposed by (Duysinx 
and Bendsøe 1998) is used as shown in  Equation 3. 
 

      (3) 
 

 
 

Macroscopic elasticity tensor is related to the 
constitutive elasticity tensor using a power law approach 
as shown in Equation 4. 
 

        (4) 
 

The design domain is assumed to be rectangular and 
discretized by square finite elements. An average strain of 

an element at the centroid of the element ( e ) can be 

expressed as 
 

        (5) 
 

 
 

Substituting Equation (4) and Equation (5) into Equation 
(6) the stress state at any arbitrary point in the design 
domain becomes 
 

      (6) 
 

The exponent 1q is used for preserving 

physical consistency in the modeling of a porous SIMP 
material (Bruggi and Duysinx 2012). The von mises stress 
of an element can be calculated as  
 

    (7) 
 
For the plane stress state, the constant matrix m  is given 
by (Luo, Wang et al. 2013). 
 

 
 

From the above derivations and relations the 
stress based topology optimization problem in Equation 1 
can be expressed as shown in Equation 8. 

The design variable is relaxed from the lower 
boundary to avoid the discontinuity of the stress constrains   
and stiffness matrix 
 

       (8) 
Subjected to: 
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METHODOLOGY 
A Matlab code was written for testing the 

developed mathematical model for different cases based 
on (O.sigmund 2001) with a flow chart as shown in 

Figure-1. The developed code was tested within a range of 
the design variable to select the appropriate value of the 
design variable for initializing the optimization process. 
 

 

 
 

Figure-1. Flow chart for the developed code. 
 
NUMERICAL RESULTS  

Maintaining initial requirement, number of 
transition elements and number of solid elements are used 
as a selection criteria among the simulation results. From 
the simulation result, it can be seen those values of the 
design variables in the range of 0.1- 0.4 failed to maintain 
the initial requirement and the number of transition 
materials were more even if the number of solid elements 
is less as show in Figure-2(a-d) and Figure-3 (a-d). The 
simulation results within the range of 0.6 - 1 have a good 

output for maintaining the initial requirement but the 
number of solid elements was much more as shown 
Figure-2 (f-j) and Figure-3 (f-j). From the simulation result 
shown in Figure-2 and Figure-3, a value of design variable 
is selected for the analysis of the two cases described in 
Figure-4 and Figure-6 based on number of transition 
materials, for maintaining initial requirements and less 
number of solid elements. 
 

 

 
 

Figure-2.  Selection of appropriate initial value for design variable for the MBB (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.5 (f) 0.6 
(g) 0.7 (h) 0.8 (i) 0.9  (j)1. 
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Figure-3. Selection of appropriate initial value for design variable for the cantiliver beam (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 

0.5 (f) 0.6 (g) 0.7 (h) 0.8 (i) 0.9 (j) 1. 
 
Case 1 

The first case corresponds to an optimization of a 
support beam from a civil aircraft produced by 
Messerschmit-Bolkow-Blohm (MBB- type beam), which 
is a classical problem in topology optimization. Only half 
of the beam is considered for analysis because of 
symmetry as shown in Figure-4. The design domain is 
discretized into 45 x 12 by 4 node square finite elements 
having unit thickness.  

Figure-5 shows the solutions obtained by means 
of the proposed model and (O.sigmund 2001). As it can be 
seen from the results executed, the solutions obtained are 
similar for keeping the general requirements, keeping solid 
materials at the supports and the point where the external 
load is applied. The compliance obtained with the 
developed code was higher than that of the results from 
(O.sigmund 2001). The stress distribution was much more 
uniform and all the elements were safe from stress failure 
as per the failure theory considered for developing the 
model. The number of transition and solid elements is 
much less than that of the (O.sigmund 2001) results which 
will make the outputs from the simulation to be easily 
manufactured. 
 

 
 

Figure-4. MBB beam domain definition and external load. 
 

 
 

Figure-5. Material distribution of the MBB beam (a) 
developed model and (b) (O.sigmund 2001). 

 
Case II  

The second example corresponds to a cantilever 
beam subjected to a unit load at the bottom right corner 
refer with Figure-6. The design domain is discretized in 32 
x 20 by 4 node square finite elements having unit 
thickness. Figure-7 shows the solution obtained by means 
of the proposed model and (O.sigmund 2001), As it can be 
seen from the simulation result, the solutions obtained are 
similar for keeping solid materials at the support and the 
right bottom corner where the load is applied. Like the 
simply supported beam the number of transition and solid 
elements is much less that of (O.sigmund 2001), which 
will decrease the time for post processing (Sigmund and 
Petersson 1998). 
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Figure-6. Cantilever beam domain definition and loads 
applied. 

 

 
 

Figure-7. Material distribution of the cantilver beam (a) 
developed model and (b) (O.sigmund 2001). 

 
From the simulation results of the two cases 

presented in the paper, the compliance of the stress based 
topology optimization was higher than that of the 
compliance based approach. For those designs where stress 
is a big concern, results from stress based topology 
optimization approaches can be used directly at the 
conceptual design stage. In the compliance based 
approach, there is no means that the designer can check the 
stress level of elements in the design domain. Therefore, it 
will be difficult to use those results from compliance based 
approach for those designs where stress is the major design 
concern. Though the compliance approach is good for 
those designs which are based on stiffness, considering the 
compliance approach for stress based designs will have 
some doubt unless the designer or end user incorporates 
some safety factors like the iterative design approach 
which needs more computational time and cost. 
 
CONCLUSIONS 

Topology optimization is a mathematical 
approach which seeks optimal material layout within a 
given design domain for a given set of boundary and 
loading conditions. It has been formulated and solved 
based for compliance minimization. Some efforts has been 
done to formulate and solve including stress constraints. 
Though considering stress in the formulation and solution 
of optimization problem is more acceptable from 
engineering point of view it has been facing challenges 
associated with the stress constraints and design variables.  
In this paper, stressed based topology optimization 
problem has been modeled based on a von Mises stress 
theory. The developed model considers relaxation of the 
stress constraints in addition to relaxation of the design 
variables, which helps to control the singularity 
phenomenon associated with the stress values associated 

with the void materials. The developed model is 
transferred to Matlab code and simulated for different 
values of design variables to determine the appropriate 
value of the design variable for initializing the 
optimization process.  The Matlab code developed is tested 
for simply supported MBB and cantilever beam. The 
simulation results shows 
 The stress based topology optimization will let the 

designer to have an optimized structure which has 
elements free from stress failure. 

  The proposed method results a final structure with 
less transition materials than that of the compliance 
based approach.  

 The compliance obtained from stress based approach 
was higher than that of the compliance based 
approach due to the consideration of the stress 
constraints. 

 There is no means which can assure all the elements 
in the design domain are free from stress failure.  

 It is difficult to assure that all the elements in the 
design domain are free from stress failure unless a 
stress constraint is induced for further analysis for 
those designs where stress is a big concern. 

Further research can be done on testing the 
developed model for different type of beams as well 
complicated problems. 
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