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ABSTRACT 

This work addresses the implementation of an online dynamic cascaded-conditional based optimization for 

handling model uncertainty occurred in an autocatalytic esterification of Propionic Anhydride with 2-Butanol. The online 

optimization strategy includes an integration of the dynamic re-optimization mechanism (trigger, i.e. ±5% of conversion 

and dynamic re-optimizer, i.e. hybrid strategy in maximizing profit), estimator (cubature Kalman Filter) and controller 

(dual mode-adaptive PID). The re-optimization and control problems are solved separately in cascaded. The re-

optimization mechanism is activated conditionally by using trigger. The simulation results show that the proposed strategy 

offers a large improvement in semi batch reactor performance if compared to the method which the optimal trajectories set 

point is pre-determined (offline optimization). Moreover, the online dynamic optimization of temperature and feed flow 

rate trajectories obtained able to sustain the conversion within acceptable range (on-spec). Meanwhile, the offline 

optimization failed to handle the effect of parameter model uncertainty thus the end conversion produced is off-spec and 

can lead to loss in profit. 

 
Keywords: online dynamic optimization, handling uncertainty, batch esterification, optimal control trajectory. 

 

INTRODUCTION 
The dynamic optimization is preferable to be 

implemented to enhance the batch processes 

performance due to its ability to capture the dynamic 

behavior of the process and can deal with the ODE/DAE 

model. Dynamic batch system is very sensitive to 

uncertainties and disturbances in the process operation. 

In semi batch esterification process, a parameter model 

uncertainty such as a mismatch kinetic constant 

parameters may cause the final product differs from the 

desired value. This discrepancy may risk the violation of 

safety constraints, production off-spec products, and 

more vitally the loss of invaluable profit. Under these 

circumstances it is desirable to implement online 

dynamic optimization strategy to desired trajectories to 

reach the optimal performances (Kadam and Marquadt, 

2007). The aim of the online dynamic optimization for 

semi batch reactor is to generate the optimal trajectories 

of process variables such as flow rates of feeds and 

temperature, which are typically re-adjusted to optimize 

the objective function in the presence of the parameter 

model uncertainty (Würth et al. 2009). 

The cascaded-conditional based optimization is 

applied in this study because it is found to be an 

effective technique for updating system with uncertainty. 

It is solving the optimization and control problem 

separately by decomposing the overall problem into two 

levels (Alonso et al. 2013). As the significance 

uncertainty and disturbance occurred, the re-optimizer 

will generate a new/modified optimal trajectory in order 

to ensure optimum performance is obtained. There was 

one strategy using the conditional based which 

implemented sensitivity of Lagrange of the objective 

function as a trigger. However, it is complicated to 

calculate the first and the second derivative of the 

Lagrange function. Furthermore, the components 

integrated in the cascaded-conditional based 

optimization that have been reported are (Kadam et al. 

2002, Kadam and Marquadt, 2007, Würth et al. 2009, 

Wolf et al. 2014): (i) trigger used was sensitivities of 

Lagrangian of objective function; (ii) dynamic optimizer 

applied was CVP in maximizing profit and yields; (iii) 

controllers implemented were PI, NMPC, neighboring 

external controller; (iv) estimators used were EKF and 

CEKF. Therefore, the development of effective way for 

online dynamic optimization strategy is a must which 

can lead to the more efficient optimal solution 

computation. 

In this work, the online dynamic optimization 

strategy proposed is the integration of: (i) trigger used 

was a simple objective function as active constraint; (ii) 

dynamic optimizer applied is hybrid strategy (HS); (iii) 

controller implemented is an adaptive PID; (iv) 

estimators used is cubature Kalman filter (CKF). The 

process considered is Catalyzed Esterification of 

Propionic Anhydride with 2-Butanol in a semi batch 

reactor. The optimal feed flow rate and temperature 

trajectories obtained are based on maximum profit 

problem. 

 

DESIGN OF ONLINE CASCADED-CONDITIONAL 

BASED OPTIMIZATION  

The cascaded-conditional based optimization is 

constructed by the integration of process model, initial 

optimal control trajectory, estimator, controller and 

dynamic re-optimization mechanism which consists of 

trigger and dynamic re-optimizer. The framework of this 

strategy is adopted from the works of Alonso et al. (2013), 

http://www.arpnjournals.com/
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Würth et al. (2009), and Kadam and Marquadt (2007) as 

shown in Figure-1. 

 

 
 

Figure-1. Schematic diagram of online dynamic optimization; online optimization loop, offline optimization 

loop, input/ output process. 

 

Process modeling of autocatalytic esterification in semi 

batch reactor 

Esterification of propionic anhydride with 2-

butanol produce sec-butyl propionate and propionic acid. 

The process is homogeneous reaction which moderately 

exothermic with no danger of decomposition reactions. 

The reaction  rate  variable  is  a  function  of catalyst  

(strong  acid,  such as sulphuric acid); exhibits a second-

order kinetics when no strong acid  is present and exhibits 

a kind of  autocatalytic  behaviour  when  sulphuric  acid  

is introduced  (Zalvidar, et al. 1993). 

In the presence of sulfuric acid, Zalvidar, et al. 

(1993) found that the reaction rate seems to be 

proportional to the acid concentration; the reaction rate 

increases with propionic acid concentration and lead to a 

kind of autocatalytic behavior. However, after reaching a 

certain concentration, propionic acid has no longer 

influenced the reaction rate. Since the various theoretical 
reaction pathways are complex, a model was developed by 

assuming the existence of two catalysts (cat1, cat2). 

Meanwhile, the transformation of the initial catalyst was 

developed by taking into account the acidity function. The 

esterification reaction scheme under consideration can be 

written as (Zalvidar, et al. 1993):   

Reaction 1:  2-butanol + propionic anhydride → propionic 
acid + sec-butyl propionate 

Reaction 2:  catalyst 1(sulphuric acid) → catalyst 2(mono-

butyl sulphuric acid) 

The model is developed based on the following 

assumptions: constant reacting heat capacity, effective 

overall heat transfer coefficient, transport properties of 

reaction mixture and density are exist; the heat losses with 

the ambient surroundings are negligible; homogeneous 

mixing and uniform distribution temperature: no heat 

accumulation in the reactor wall; no secondary heating 

effects such as power introduced by stirrer; no pressure 

effect; 2- butanol stated as limiting reactant. The scheme 

of esterification semi batch reactor is shown in Figure-2. 

Tr
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Figure 2. Scheme of esterification process a) batch reactor 

and b) semi batch reactor; A: 2-butanol (limiting reactant), 

B: propionic anhydride, Cat: catalyst. 

 

Reaction rate constants follow Arrhenius law. 

The expression of the acidity function is 

(Zalvidar, et al. 1993):  

http://www.arpnjournals.com/
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      (1) 

 

The concentrations profile in the autocatalytic 

esterification reaction can be denoted by using the mass 

balances equations which were involved in the dynamic 

optimization task. The mass balances for semi batch 

autocatalytic esterification reactor (Ubrich, 2000) are 

given by Equations (2-6) as given below: 

The dynamic model the heating-cooling jacket 

was derived from Ubrich (2000) which was useful for 

design of controller. The energy balances for semi batch 

reactor which can be represented by the reactor and jacket 

dynamics are expressed in the Equations (7 and 8). The 

parameters and their values involved in the energy 

balances equation are tabulated in Table-2. 

The semi batch reactor model which consist of 

the mass and energy balances are represented by following 

equations: 

 

    (2) 
 

    (3) 

 

    (4) 

 

    (5) 

 

       (6) 

 

   (7) 

 

    (8) 

 

where CA, CB,CC, CCat1, and Ccat2 are the 

concentration of 2-butanol, propionic anhydride; propionic 

acid, sulphuric acid and mono-butyl sulphuric acid, 

respectively. Fo , V are the feed rate and the volume of 

solution within reactor. Fj is the jacket flow rate, Tj is the 

jacket temperature; Tjin is the inlet jacket temperature; Tfeed 

is the feed temperature; A is the heat exchange area; Vj is 

the volume of jacket; U is the heat exchange coefficient; 

Cp, Cj is heat capacity of solution in the reactor and the 

jacket, respectively; H is the acidity function; ∆Hr is the 
heat of reaction; ρ is density of solution in reactor; ρj is 

density of jacket solution. Those pertaining constant value 

is depicted from Ubrich et al. (1999). The initial value of 

CA, CB, CC, CD, Ccat1, Ccat2 V, T and Tj is 3.4M, 0M, 0M, 

0M, 1.02 x 10
-2

M, 0M, 1L, 303K and 303K, respectively. 

The reaction kinetics of this esterification has 

been investigated and the data of parameters is depicted 

from Zaldivar et al. (1993) as shown in Table-1 

 

Table-1. Kinetic parameter equations (Zalvidar et al, 

1993). 
 

 
 

Table-2. Parameters involved with energy balances (Alos, 

et al. 1996, Andre, et al. 2002, Ubrich, 2000). 
 

 
 

Hybrid strategy of dynamic optimization 

 The aim of dynamic optimization problem is to 

determine control profiles that is minimizing or 

maximizing the given objective function without violating 

the specified process constraints. With the optimal control 

policy, the controlled system is driven from the initial state 

to a final desired state in an optimal way (Peters et al. 

2007). The initial set point (pre-determined optimal 

trajectory) was obtained by dynamic optimizer in offline. 

Then, dynamic optimizer was also implemented in 

dynamic re-optimization mechanism which produced the 

new optimal controls trajectories. In this study, a hybrid 

strategy has been applied as dynamic optimizer. The 

http://www.arpnjournals.com/
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hybrid strategy implemented a control vector 

parameterization as a NLP transformation and hybrid 

(stochastic-deterministic) as a NLP solver. The detail 

description and procedure of CVP and hybrid based 

optimization is explained below. Then, the problem 

optimization of this case study is also described in the 

following sub section. 

 

Control vector parameterization 

The basis of the CVP method is to parameterize 

the control trajectories and leave the state trajectories 

continuous. First, the ODE solver calculates the 

differential equation. Then, the original problem of 

dynamic optimization is transformed into the finite 

dimensional problem (NLP) for execution the static 

optimizer. Further, a suitable gradient method with a NLP 

type algorithm is needed.  This corresponds to a ‘feasible’ 
path approach since the differential equations are satisfied 

at each step of the optimization. A piecewise-constant or 

piecewise -polynomial approximation of the inputs is often 

utilized. The basic procedure is as follows: 1) 

Parameterize the inputs using a finite number of decision 

variables (typically piecewise polynomials). The vector of 

decision variables also includes final time; 2) Choose an 

initial guess for the decision variables; 3) Integrate the 

system states to the final time and compute the 

performance index and the constraints; 4) Use an 

optimization algorithm (such as steepest descent or Quasi-

Newton methods to update the values of the decision 

variables; Repeat Steps 3-4 until the objective function is 

minimized. 

 

Hybrid based NLP solver 

 The hybrid optimization applied two phase of 

NLP solver, i.e stochastic and deterministic based 

optimization. The stochastic method of NLP problem 

considered is Differential Evolution (DE) method which 

uses population based approach for minimizing the 

performance index (Storn and Price, 1997). Meanwhile, 

sequential quadratic programming (SQP) was applied in 

deterministic based which usually requires very good 

estimates of the gradient of the performance index with 

respect to the decision variables. The HS method was 

implemented by using code package using DOTcvp code 

package created by Hirmajer et al (2010).  where the 

algorithm had been developed by from Banga et al’s 
(2005) work. 

.  The HS method operates in two sequential steps. 

In the first step, the CVP-stochastic (DE) method is used 

to locate the vicinity of the global solution with a user-

specified initial point and stopping when a convergence 

criterion (SC1) related to the distance between iterates is 

satisfied. This information is then used to initialize a CVP-

deterministic (SQP) method in the final step,and a refined 

global or near-global solution, satisfying a convergence 

criterion (SC2). 

The DE’s stop criteria SC1 can be tuned based on 
empirical results for specific problem classes, the ranges 

for the stopping criteria: 0.01-0.05. Meanwhile, SQP’s 

stop criteria value SC2 can be determined by tolerance of 

function: 10
-6

 (Balsa-Canto et al. 2008, Banga et al. 2005, 

Hirmajer et al. 2010). 

 

Formulation of optimization problem 

In this study, volume of solution, the reactant, 

catalyst and product concentration were considered as 

states variables. The control variables considered were 

feed flow rate and temperature reactor. The objective 

function was to maximize profit. The inequality constraint 

associated was end concentration of limiting reactant and 

total volume reactor. The operation profit is derived from 

the price of the product. The operation profit (RM/min) 

expression is presented by Equation 9 (Aziz, 2001): 

 

     0C C D D A A A B BF BV C P C P C C P V P C C V
P

t

    
      (9) 

 

where PA, PB, Pc and PD, are the prices of A, B, C 

and D, E and F with numerical values [26.75, 34.39, 

10.17, 339.1], respectively (Xingtai, 2014, Sigma-Aldrich, 

2014). All values are in RM/mol. The dynamic 

optimization formulations for both problems are shown as: 

 

Problem: 

0,
max
T F

P  

Subject to semi batch dynamic model Equation.2-4; 

Inequality constraints: V≤ 2.2L; Bounds: 0≤ F0 ≤ 5x 10-4
L 

s
-1

 and 303K≤ T ≤ 343K. 
 

Cubature Kalman filter (CKF) of estimator  

 An estimator can be used for generating data 

about current state and parameter of the system and 

unmeasured state and parameter. The information of states 

and parameter were used to calculate the updated value. 

The   estimator    structure   builds   the mathematical 

framework    for combining    sensor signals from the real 

process (measurement) to calculated data from the model 

(Tumuluri, 2008). 

 The estimator problem is concerned with the 

estimation of the state vector of a dynamic system which 

is governed by the non-linear stochastic differential 

equations approximated in discrete time as: 

 

x k = f(x k − 1 , k − 1) + q k – 1                                            

y k = h(x k , k) + r k                                                                                         (10)                      

 

where x k ∈ R 
n
 is the state on  the  step  time k, f  

is  the   dynamic  model  function,  qk−1 ∼ N(0, Qk−1) is the 

process noise on the step time k−1, Q  is process noise 
covariance. The prior distribution for the state is x0 ∼ N 

(m0, P0), where parameters m0 and P0 are initial mean and 

covariance of the states which are set using the known 

information from the system under consideration. y k ∈ R 
m
 is the measurement on the step time k, h is the 

measurement model function,  r k ∼ N(0, R k ) is the 

measurement noise of step time k, R is the measurement 

noise covariance (van der Merwe, 2004). In this study, the 

http://www.arpnjournals.com/
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CKF has been used to develop nonlinear state observers 

for the esterification process. 

Cubature Kalman filter (CKF) uses a third-degree 

cubature approximation to solve the Gaussian integrals 

(Arasaratnam and Haykin, 2009). Specifically, a third- 

degree spherical-radial cubature rule provides a set of 

cubature points scaling linearly with the state-vector 

dimension. The CKF may therefore provide a systematic 

solution for high- dimensional nonlinear filtering 

problems. CKF method was implemented using package 

code developed by Hartikainen et al (2011).  

 The states x and measurements y of the 

autocatalytic esterification semi batch reactor considered 

were: 

1 2[        ]; [   ]A B c D cat cat j A jx C C C C C C T T y C T T 
 

The initial condition of the state estimation which is the 

same as the initial model is: 
-2

0 [3.4M 0 0 0 1.02x 10 M 1 303 K 303 K]x   

Measurement noise has been considered on 

concentration of 2-butanol, the reactor and jacket 

temperatures. State noise was added to the system 

dynamic equations. The noises involved in the cases was 

maintained at low level where their values set as process 

noise covariance (Q matrix) = diag [ 0  2.4 x 10
-14

 2.4 x 10
-

10
 1x 10

-12 
1 x 10

-14
    1x 10

-14  
0 0] and measurement noise 

covariance (R matrix) = diag [5x 10
-1 

5 x 10
-1

 5x 10
-1

] 

(Ramkhelawan, 2000). 

 

Controller for tracking 

 The temperature trajectory can be tracked by the 

dual mode of adaptive PID controller. The dual mode 

control (DM) strategy which combines the on-off and  

adaptive PID controller was implemented. The general 

DM control algorithm adopted from Liptak (1999). The 

adaptive PID controller implemented digital PID 

controller algorithm which is suitable for the control of 

system with time delay since the information of input data 

generated from estimator was supplied in a discrete time.  

The details of adaptive PID controller and its tuning can 

be found in Landau (1990). Meanwhile, the computer code 

of the adaptive PID controller was developed by Salmah et 

al. (2001). 

 

Reoptimizer activator (trigger) 

 A simple trigger was designed as the conditional 

switch to activate the dynamic re-optimization. The spec 

of final product (±5% of conversion) constraint was 

selected as trigger because the trigger of conversion was 

simple to calculate and directly correlated with the 

objective function (component of the economic equation). 

Therefore, the dynamic re-optimizer was activated if the 

condition of conversion significantly deviates from pre-

determined optimal profile of conversion and across the 

active constraint (±5% of conversion) in the presence of 

disturbance and uncertainty. 

The simulation of cascaded-conditional based 

optimization was carried out in the SIMULINK® 

environment. The simulations were conducted by using 

IntelR CoreTM i3 CPU 530 with 2.93GHz and 3.17GB of 

RAM. 

In order to evaluate the performance of online 

optimization strategy, the significance uncertain parameter 

that can violate the active constraints and generate the off-

spec product (< lower constraint) was introduced in the 

process. The decrement of constant parameter from actual 

nominal value, - 30% of k01 and +5% of Ea3, were 

examined as uncertainty. Finally, the results obtained from 

the online strategy were compared to those obtained from 

the offline strategy. 

 

RESULTS AND DISCUSSION 

Figure-3 shows the conversion profile obtained 

by the online dynamic optimization in the presence 

parameter uncertainty, i.e. - 30% of k01 and +5% of Ea3. 

The optimum profit for this case study resulted in new 

optimal temperature trajectories as shown in Figure-4. 

Meanwhile, the new optimal feed flow rate in the presence 

of parameter uncertainty is shown in Figure-5. The CKF 

estimation to predict actual parameter k01 and Ea3 in the 

presence of initial uncertainties is shown in Figures 6a and 

6b, respectively. The results of online and offline dynamic 

optimization including the conversion and profit under 

uncertainty occurrence are summarized in Table-3 

From Figure-3, the conversion obtained from 

offline optimization decreased significantly since the 

change of - 30% of k01 and +5% of Ea3 reduced the 

formation rate of the product. In the online strategy, the 

CKF applied can acknowledge the impact of parameter 

uncertainty so that parameter k01 and Ea3 was updated to 

generate an estimate value close to the actual value as 

shown in Figure-6. However, there was a mismatch during 

the first 40 min causing the conversion to exceed the 

active constraint around 10 min as shown in Figure-3. The 

trigger activated the dynamic re-optimizer to re-optimize 

the temperature and feed flow rate trajectories as shown in 

Figures-4 and 5 respectively. This action kept the 

conversion within active constraints (acceptable range).  

From Table-3, it can be seen that online 

optimization maintained the product on-spec (conversion= 

99.88%) and profitable (= RM/min 12.83). On the other 

hand, offline optimization suffered off-spec product 

(conversion= 94.40%) and led to less profit (= RM/min 

10.61). It is the off-line policy that conversion is computed 

using incorrect parameter value without the use of 

parameter estimator. Thus, no modification of the optimal 

trajectories that led to the final conversion obtained lower 

than low constraint. Consequently, the conversion did not 

satisfy the requirements of product quality. Figure-4 

indicated that the adaptive PID controller was able to track 

the online temperature trajectory obtained. 
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Table-3. Results of optimization of online optimization 

and offline optimization in the presence of parameter 

uncertainty, i. e. - 30% of k01 and +5% of Ea3. 
 

 
 

 
 

Figure-3. Conversion profile for dynamic optimization 

study. 

 

 
 

Figure-4. Optimal temperature trajectory for dynamic 

optimization study. 

 

 
 

Figure-5. Optimal feed flow rate trajectory for dynamic 

optimization study. 

 

 
(a) 

 

 
(b) 

 

Figure-6. Estimation of a) -30% of k01 b) +5% of Ea3. 

 

CONCLUSIONS 

  The online dynamic optimization of Catalyzed 

Esterification of Propionic Anhydride with 2-Butanol in 

semi batch has been carried out. The cascade optimization 

strategy was implemented to update the optimal 

trajectories when a significant parameter model 

uncertainty occurs in the process. The re-optimized 

temperature and feed flow rate trajectories drove the 

conversion within the active constraint which maintains 

the profit of process. Meanwhile, the offline optimization 

mode cannot capture the effect disturbance which led to 

off-spec end product. 
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