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ABSTRACT 

Gas turbines are known to contribute to economic gains. But then, they are also covertly responsible for 
environmental loads. In the conventional approach, manufacturer supplied tool is used for condition monitoring. 
Drawbacks of such a tool include (i) the tool being designed for limited number and known types of faults, (ii) a tool 
specifically designed for experienced users, (iii) a tool featured by separate modules for monitoring and reliability, and (iv) 
a tool designed focusing on a particular system only. Meanwhile, the purpose of diagnostics and reliability are to enhance 
preventive maintenance. Hence, we suggest that they should be integrated to benefit from synergized use of the two 
aspects. Based on this argument, the purpose of this paper is to explore on the methods that integrate performance 
diagnostics with reliability monitoring. As it turned out, there is no specific method that addresses all the issues in fault 
diagnostics system design. The thermo-economic approach proved to be powerful in estimating performance changes and 
energy loss due to the presence of malfunctions. Nevertheless, this method cannot be used to address problems encountered 
by sensors outside the thermodynamic zone (e.g. vibration signal, lubrication condition etc.). Regarding reliability, there 
seems to be a gap in (i) defining states of the system, and (ii) in integrating reliability with diagnostics. There is also no 
performance indicator to evaluate efficacy of a diagnostic system as it relates to environmental load and economic gains. 
The paper includes additional remarks potentially useful for further research. 
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INTRODUCTION 

Gas turbines are widely used either as direct drive 
for are compressors or as a prime mover in electric power 
generation. They are preferred to steam turbines and 
reciprocating engines due to their fast starting 
characteristics and high power to weight ratio. With the 
current technology, a power as high as 340 MW can be 
generated by a single gas turbine. Efficiency up to 40% in 
open cycle and more than 60% in combined cycle 
configuration has been reported possible. In general, they 
are believed to be ideal for distributed power generation 
and for controlling the emission of greenhouse gases. 
However, gas turbines are highly specialized machines 
and hence they require advanced techniques to allow 
proactive maintenance. According to reports from 
different sources, the maintenance cost may reach up to 
35% of the operating cost.  

Typical design of a two-shaft gas turbine is 
shown in Figure-1. The core turbine drives the compressor 
while the power turbine is intended to induce rotational 
power on the generator shaft. In a separate design, the 
aero-derivative gas turbine may have a single shaft and the 
power from the tubine might be shared between the 
compressor and generator, in most cases 2/3 of the power 
used to drive the compressor.  

Gas turbines may not stay at a performance level 
evisaged at the design stage, the reasons being (i) fouling 
in the air filter and compressor, (ii) aging of gas path 
components, (iii) excessive clearance due to rubbing, (iv) 
malfunctions, etc. The rate of deterioration might also be 
aggravated by local operating conditions and poor 
maintenance procedure. In relation to this, the idea that has 
been proposed and being pursued is to improvise the 
conventional maintenance procedure by incorporating 

advanced diagnostics, prognostis and reliability 
monitoring tools. An enhancement of the stated type is 
believed to ensure (i) safe and continuous operation, (ii) 
efficient use of the available energy, and (iii) controlled 
emission of greenhouse gases. Inline with this argument, it 
is the objective of the current paper to conducted a review 
and identify if integration of fault diagnostics and 
reliability monitoring has been attempted before.  
 

 
 

Figure-1. Typical two-shaft aero-derivative gas turbine 
with power turbine (Ogaji and Singh 2006). 

 
A comprehensive review on performance analysis 

based diagnostics methods for both aero and industrial 
applications was reported in (Li 2002). Since then this 
particular work attracted 167 citations and it has been an 
excellent source for other similar review papers (Marinai, 
Probert et al. 2004, Bocaniala and Palade 2006, Lazzaretto 
and Toffolo 2006, Kong 2014). The current work, with the 
above mentioned objective, is opted to be considered as an 
extension of previous review papers. Apart from that, it is 
scoped to include (i) state of the art model identification 
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methods, (ii) recent optimization techniques worth 
considering for diagnostics system design, and (iii) 
concepts lucking in multi-state reliability modeling and 
integration. 
 
MODEL IDENTIFICATION 

The design of a dynamic observer for fault 
diagnostics requires simple but reliable model. Assuming 
that the system dynamics is captured by a general 
nonlinear model that incorporates orthonormal basis 
filters, the output might be identified as 
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 Tn 21ξ is vector of OBF poles with the 

condition that 1),(),(   zgzg ji ; d  is the time 

delay; θ  is vector of model parameters; )(te is the 

modelling error which might be assumed identically and 
independently distributed or abounded in a certain range. 
Optimum values for θ is to be decided by minimizing or 
maximizing a performance indicator (e.g. 
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can be reduced to LTI or any other nonlinear models like 
ANN, Voltera and TSK. 
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OBFs are considered advantages for they allow 

using partial knowledge about the system dynamics to 
construct parsimonious models. However, OBFs have not 
be explored for diagnostics system design and also for 
applications intended specifically for gas turbines. 
 
Basic structure of a fault diagnostics system 

A fault in an industrial gas turbine can be of a 
controller fault (t)fc , an actuator fault (t)fa , a process 

fault (t)f p or a fault linked to the measurement sensors 

(t)fu or (t)f y . 

In relation to the process models, faults on inputs 
and outputs sensors, respectively, are often modelled 

either as additive type, (t)f(t)uu(t) u
*  , or 

multiplicative type, (t)u(t)f *
u  . Where the vector 

T
nu ]f...f[f(t)f u,2u1uu   describes a specific fault 

signature and  is the multiplier. Including the effect of 
measurement noise, (t)u~  and (t)~y , with the assumption 

that they are white, zero mean and uncorrelated Gaussian 
processes, faulty sensor signals can be modelled as  
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Additive faults manifest themselves as offsets of 

sensors where as multiplicative faults appear as parameter 
changes within the process – e.g. fouling the compressor. 
Faults are also distinguished based on their time 
dependence as abrupt fault (stepwise), incipient fault (drift 
like), and intermittent fault.  

A diagnostic system takes signals from input 
sensors, output sensors, and sensors for controller output 
(cf. Figure-2). Additional sensors might also be included 
to account for signals outside the control loop. Desirable 
characteristics of a diagnostics system and classification of 
diagnostics algorithms are discussed in a review paper by 
Venkatasubramanian et al. (Venkatasubramanian, 
Rengaswamy et al. 2003). In general, a diagnostics system 
is required to be reliable and flexible to respond to 
unknown cases. The challenge is  to establish a framework 
that is capable of identifying the cause of problems based 
on limited combinations of upticks and downticks. 
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Figure-2. General structure for a fault diagnostics framework. 
 
RESULT AND DISCUSSIONS 

A number of studies have been reported on gas 
turbines performance diagnostics and reliability 
monitoring. The methods span expert systems to thermo-
economic approachs. In the sequel, the most common 
diagnostics methods are reviewed. 
 
Analytical methods 

The methods in this group (observers, parity 
relations, parameter estimation, and Kalman filters) are 
considered as are the classical methods for fault 
diagnostics (Bocaniala, Palade et al. 2006). They are 
probably the oldest methods. All of them require 
mechanistic models, making them limited to systems 
having few numbers of inputs and outputs. Reported 
results show that these methods have been applied to 
steam generators (Koppen-Seliger, Kiupel et al. 1995), 

power plant boiler (Wang 1997), power plants (Simani, 
Fantuzzi et al. 1999), and thermal power plant (Alessandri, 
Coletta et al. 2003). One basic step of the method entails a 
model being simulated in parallel with the real system and 
residuals calculated as the difference between the model 
outputs and outputs from the plant. Later, the derangement 
is considered to detect and diagnose a problem. For gas 
turbines, it might be difficult to apply these methods 
attributed to the nonlinear relationship between system 
variables and the difficulty in developing a reliable first 
principle model. Perhaps the only exception is the method 
reported in (Simani 2005, Simani 2007). Simani has 
shown that a state observer or Kalman filter based 
diagnostic system can be developed replacing the state-
space model by time series models like ARX and 
ARMAX. Selected literature on the use of classical 
diagnostics methods are listed in Table-1.  

 
Table-1. Summary of classical diagnotics methods. 

 

Method Special features Example reference 

Dynamic Observer 
Equation Error model used to form the state space 

model, 
Method used for residual generation 

(Simani 2005, Simani 
2007, Rahme and 

Meskin 2015) 

Kalman Filter 

Frishch scheme combined with EIV model are used 
to creat the state-space model, 

Kalman method is applied for residual generation 
Hybrid kalman filter design in the context of multi-

model approach 

(Simani 2005, Simani 
2007, Ganguli 2012, 
Meskin, Naderi et al. 

2013, Pourbabaee, 
Meskin et al. 2013) 

 
Multivariate statistical process control 

These methods are derived directly from 
measured process data. The first type, called PCA, is 
based on the mapping of covariance matrix of the data to a 
reduced dimension space applying Singular Value 
Decomposition (SVD). The fault detection is done 

applying Hotelling’s 2T and Q-statistic. The method has 
been applied to combined cycle gas turbines (Mina, Verde 
et al. 2008), and thermal plant (Ritchie and Flynn 2003).  
The second type, partial least squares (PLS), was also used 
in thermal plant (Ritchie and Flynn 2003), and combined 
cycle gas turbine power stations (Pan 2011). PCA relies on 
Gaussian error assumption which is not often the case. It 
also overlooks serial and self-correlations which makes it 

ineffective for systems whose behaviors change from with 
time (e.g. variable geometry compressors and turbines). 
 
Computational intelligence  

The methods in this group (artificial neural 
network, fuzzy systems, and nature or quantum inspired 
optimization algorithms) are generally considered 
nonlinear approaches. Either ANN or fuzzy systems can 
be used as residual generators or fault classifiers.  Fuzzy 
systems allow incorporating expert’s knowledge in the 
diagnostics system design. The fact that a single method 
could not fulfill all the design requirements also 
necessitated the combined use of ANN and fuzzy systems. 
Regarding the optimization algorithms (genetic algorithm, 
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particle swarm optimization, bat algorithm, etc.), they 
have been applied to train models and decide on the 
number of inputs or model order. Sreedhar et al. (1995) 
and Vanini et al. (Sadough Vanini, Khorasani et al. 2014) 
investigated the use of neural networks and sliding 
observers for fault detection in a thermal power plant, and 
gas turbine, respectively. Simani, Fantuzzi et al. (1998) 
and Simani (2005) considered Kalman filters and neural 
networks for fault detection and diagnosis in industrial gas 
turbines. Leger, Garland et al.(1998), on the other hand, 
examined the feasibility of using neural networks 
combined with statistical control charts. Similar studies 
were reported in (Bourassa 1999, Lu, Zhang et al. 2001, 
Ogaji, Sampath et al. 2002). Regarding fuzzy systems, 
they have been used separately (Diao and M. Passino 
2004, Ogaji, Marinai et al. 2005) and combined with ANN 
(2002). One drawback of CI techniques is that for large 
scale systems, they may not be able to provide better 
performance. There are suggestions that distributed fault 
detection and diagnosis system alleviate the drawback. 
One such design was reported in (Koppen-Seliger, Kiupel 
et al. 1995). Residuals from all subsystem were considered 
for fault isolation only. In the work of Heo and Lee 
(2006), it was suggested to use a multi-agent based fault 
diagnosis design that uses neural networks for modeling. 
A similar idea was also proposed by Arranz, Cruz et al. 
(2008).  

Models based on the use of Computational 
Intelligence (CI) techniques have been found falling in one 
of the three basic structures, Figure-3. The first method is 
using either the neural network or the fuzzy system as a 
classification tool, Figure-3(a). In this case, all the input-
output data are feed to the model and fault index delivered 
as an output. While this method works for simple systems 
with limited number of output features, it tends to be 
troublesome as the parameter size increases and if the 
process is featured by multiple operating conditions. In the 
second design, the intelligent model is still used as a 
classifier but the inputs are calculated by another 
algorithm, Figure-3(b). In this case, the numbers of inputs 
are limited to the number of states being monitored.  A 
good example is the research work by Simani, Fantuzzi et 
al. (1998). The last approach is to use the intelligent system 
as modelling technique, Figure-3(c). In all the cases, curse 
of dimensionality seems an issue yet to be solved.   
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Figure-3. Basic application oriented structures of CI based 
FDD: (a) Direct use of measured Signals, (b) Models 

based on residuals, and (c)  Models at two stages. 
 
Expert system and causal models  

These methods use structured knowledge as a 
critical element of the fault detection and diagnostics 
system. Predicate calculus, production- rules, frames, 
scripts or semantic networks are the common methods to 
build the knowledge base. In operation, the searching is 
carried out using forward chaining or backward chaining 
schemes. For a large searching space, however, depth-first 
and breadth-first searches may be considered. Applications 
of expert systems span coal fired power plant(Eddie and 
Moonis 1988), steam condenser(Stefanini, Cavanna et al. 
1988), boiler feed water systems (Adamson 1990), and 
turbo-generators (McDonald, Stewart et al. 1991).  Causal 
models, on the other hand, use causal relationships to 
associate a culprit for a particular fault. A typical example 
from this group is Symptom-Tree Model (STM). Causal 
models have been applied to steam boiler plant (Lee, Mo 
et al. 1997), and de-aerator system of a power plant (Ji, 
Wen-liang et al. 2005, Yong-Guang, Jian-Qiang et al. 
2006). Drawbacks of an expert system are - (i) the 
difficulty to apply to large scale systems for they require 
large amount of effort, (ii) Often ad-hoc design, (iii) the 
need for huge amount of data, and (iv) requires and coding 
of expertise.  
 
Thermo-economic approaches   

Thermodynamic changes due to system 
malfunctions are better described by energy and thermo-
economic approaches. As shown in the research work by 
Valero et al. (2004) and Lazzaretto et al. (Lazzaretto and 
Toffolo 2006) – many more papers are also available on 
the same idea –,  a fault that could cause property change 
manifests itself as a rise in the fuel consumption or an 
increase in component irreversibility. Tracking the 
changes with respect to a reference value could lead to 
identification of the real cause, hence effective 
diagnostics. Over the years, several improvements have 
been made to the original formulation of the method. In 
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terms of application, the case studies covered coal fired 
(Zhang, Chen et al. 2007) and combined cycle power 
plants (2004). The first weakness of this method is that, 
similar to the other methods, a reference model and actual 
operation data are required posing a challenge in applying 
it to systems with limited number of measured signals. It 
also fails to account for vibration, startup system and lube 
system signals. Sometimes, making a distinction between 
intrinsic and extrinsic faults are also challenging as they 
may both demonstrate similar kinds of symptoms. The 
idea thought to have overcome this problem is to combine 
the current method with other methods in the framework 
of multi-model design.  
 
Multi-state reliability model  

Equally researched in gas turbine based power 
plants is Multi-State Reliability prediction (Fazekas and 
Nagy 2010). Recently, Hagifam and Manbachi (2011) 
showed an MSS model constructed for a CHP plant. 
Subsystems like electricity generators, fuel distribution 
and heat generation were included. The states were 
defined using either ambient temperature data(Fazekas and 
Nagy 2010) or directly relying on the trend for electricity 
generated from a primary fuel. The limitation in the 
availability of long term data, however, has led to the need 
to focus on short-term reliability (Lisnianski, Elmakias et 
al. 2012). Even then, such studies cannot be performed 
based on steady state probabilities. This is to say that a 
different approach is needed to better characterize 
reliability of gas turbines, especially when they are 
intended to cater the power need for the peak hours.  
 

 
 

Figure-4. State definition for reliability modelling: (a) 
two-state, and (b) multi-state. 

 
CONCLUSIONS 
 The purpose of this paper is to explore on the 
methods that integrate performance diagnostics and 
reliability monitoring. The following conclusions are 
drawn from the reported material: 

 There is no specific method that addresses all the 
issues in fault diagnostics system design. And, this 
has led to the multi-agent or multi-model based design 
that uses hybrids of methods from different domains. 

 The thermo-economic approach proved to be 
powerful in estimating performance changes and 
energy loss due to the presence of malfunctions. 
Nevertheless, this method cannot be used to address 

problems encountered in and by signals outside the 
thermodynamic zone (e.g. vibration signal, lubrication 
condition etc.). 

 Orthonormal Bais Filters are reported to be ideal to 
for parsimonious models. This in the area of gas 
turbine diagnostics has not been reported yet. Perhaps 
integrating this with the likes of Kalman filter and 
computational intelligence method may ease the 
design difficult in multi-model approach. 

 In reliability studies, there seems to be a gap in (i) 
defining states of the system, and (ii) in integrating 
reliability with diagnostics. There are also no 
performance indicators to evaluate efficacy of a 
diagnostic system as it relates to environmental load 
and economic gains. 
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