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ABSTRACT  

Journal bearings are widely applied in different rotating machineries. These bearings allow for transmission of 

large loads at mean speed of rotation. In machinery the parameters characterizing operation such as, power losses, 

vibration amplitude and frequency are dependent on the type of bearings used, specific loads, bearing clearance, and load 

orientation. Hydrodynamic Journal bearing based on hydrodynamic lubrication, hydrodynamic lubrication means that the 

load-carrying surfaces of the bearing are separated by a relatively thick film of lubricant, so as to prevent metal-to-metal 

contact, and that the stability thus obtained can be explained by the laws of fluid mechanics. In journal bearing that operate 

with stationary load under steady state condition, cavitation takes place at the sub-atmospheric pressure commonly 

encountered in divergent section of the oil film.  Lubricating oil contains roughly 10% by volume of dissolved gas when 

saturated with air. If oil pressure falls below the usual atmospheric saturation pressure, this dissolved air tends to come out 

of solution as cavity bubbles. Reynolds equation derived from Navier Stock’s equation, it is highly nonlinear partial 
differential equation and very complex to solve analytically. Hence the Reynolds equation solves using numerical 

technique with help of computer program. Finite difference method is suitable for handle the differential equation and 

reduced differential equation is solved using a successive over relaxation (SOR) technique. The main aim is to find out 

hydrodynamic journal-bearing performance characteristics, such as pressure distribution, attitude angle and maximum 

pressure, using the Swift-Stieber Boundary Condition. Also this boundary condition helps to encounter the cavitation effect 

and its location. 
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INTRODUCTION  

Hydrodynamic Journal bearing based on 

hydrodynamic lubrication, hydrodynamic lubrication 

means that the load-carrying surfaces of the bearing are 

separated by a relatively thick film of lubricant, so as to 

prevent metal-to-metal contact as shown in Figure-1, and 

that the stability thus obtained can be explained by the 

laws of fluid mechanics. 
 

 
 

Figure-1. Hydrodynamic journal bearing [8] 

 

Reynolds derived the governing equations for 

lubricating films in simplifying the Navier-Stokes 

equations [1] considering thin-film effect [2]. Hence the 

Reynolds equation solves using numerical technique [3] 

with help of computer program.  

Swift-Stieber Boundary Condition is most 

practical boundary condition [4] to find the static 

characteristics of bearing [5]. Lubricating oil contains 

roughly 10% by volume of dissolved gas when saturated 

with air. If oil pressure falls below the usual atmospheric 

saturation pressure, this dissolved air tends to come out of 

solution as cavity bubbles. Swift-Stieber Boundary 

Condition explain the phenomenon of liquid cavitation in 

steadily loaded fluid film bearings and notes the most 

adequate boundary conditions at the inception as shown in 

Figure-2 and reformation boundaries of the cavitation zone 

[6]. 

 

 
 

Figure-2. Cavitation inception in a thin film. [6] 
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MATHEMATICAL MODELING OF JOURNAL 

BEARING 

Generalized Reynolds equation for hydrodynamic 

lubrication is given by:  
 

3 3h p h p dh
6 U

x µ x z µ z dx

                      
                      (1) 

     

Where z = bearing length, R= journal radius, θ = motion 
angle, U = journal speed, μ = viscosity 

For the sake of convenience, the above equation 

is first non-dimensionalized by the introduction of the 

following non-dimensional quantities 
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Then, Reynolds equation, Equation (1) can be 

non-dimensionalized in the following form 
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Apply finite difference method to reduce above equation 

in to algebraic equations. 

 

Finite difference method 
 

 
Figure-3. Finite difference grid for the oil film mesh. 

 
From Figure-3, the appropriate finite difference 

operators for the partial derivatives are:   
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 By writing difference equations of the form of 

Equations 4 at each point within the lubricant film where 

Reynolds equation applies, obtains a set of algebraic 

equations for the discrete unknown pressure. We obtain P 

(i, j) in the following form  
 

, 1, 1, , 1 , 1  i j i j i j i j i jP AP BP CP DP E                          (4) 

 

Where A, B, C, D & E are constant. 

If the number of nodal points at which the 

pressure is to be calculated is M in circumferential 

direction and N in the length direction, then we have       

M x N equations of the form of Equation (4). The 

boundary conditions are given as the pressure at the points 

on the boundary. By solving these simultaneously, the 

pressures at respective nodal points are obtained. For 

locations at the edges of the lubricant film, one simply sets 

the pressure equal to the known boundary pressure. This 

set of equations can be solved by several methods for the 

discretized pressures defined at each i, j grid point, some 

of which are described in linear algebra and numerical 

analysis texts. 

One of the methods to solve these simultaneous 

equations is Successive over Relaxation (SOR). Pressure 

at all the nodal points can thereby be found in a finite 

number of operations. Further, if we sweep the lubricating 

domain two dimensionally with the calculation of equation 

5.4 at each nodal point in consecutive order starting from a 

suitable nodal point, and if this is repeated a sufficient 

number of times, then it is expected that the pressure 

obtained at each nodal point gradually approaches the true 

value of the pressure. This is called the iterative method 

(successive approximation method). 

These simultaneous equations solved with the 

help of computer program. MATLAB program developed 

to solve the M x N simultaneous equation using successive 

over relaxation method. In this case, replace the previous 

iteration pressure value into the latest iteration pressure 

value and the calculation will be repeated until the 

following relation is satisfied: 
 

1,
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, ,

   

k kM N
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Where, ,

k

i jP is pressures obtained in the k
th

 

calculation, 
1

,i j

kP 
are those in the previous calculation, 

and  is a sufficiently small allowable error. The pressure  

,

k

i jP obtained in the k
th

 calculation will be a solution of 

pressure distribution ,i jP . For a high accuracy of 

calculation, a put the value of   is 10
-6

 to 10
-12

. 
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Successive over relaxation   

  This method reduces all equations in the 

system to equations in only one unknown only which can 

be solved immediately. All other unknowns in each 

equation are considered to be known and equal to some 

previously computed value. Therefore, an initial 

distribution is guessed and then successively improved by 

solving the system of equations in one unknown. Make 

repetition in the solution procedure number of time unless 

the error between current pressure value and previous 

pressure is negligible.  

The SOR method is similar to the Jacobi and Gauss-Seidel 

methods, but it uses a scaling factor, ω, to more rapidly 

reduce the approximation error hence minimum number of 

iteration required. 

y

x

W
tan

W
    

  When 1 < ω, the procedures are called over-

relaxation methods, which are used to accelerate the 

convergence for systems that are convergent by the Gauss-

Seidel technique. These methods are abbreviated SOR for 

Successive Over-Relaxation and are used for solving the 

linear systems that occur in the numerical solution of 

certain partial-differential equations. 

 

Reynolds boundary condition 

 In the Reynolds boundary condition the oil film is 

assumed to terminate at a certain position         cav    at 

which both the pressure and pressure gradient are zero, 

simultaneously. 

0     &     0                      cav

P
P at  




  


 

 

Load capacity 

The load capacity is solved by integration of the 

pressure wave around the bearing. In the case of a finite 

bearing, the pressure is a function of z and θ. The 
following are the two equations for the integration for the 

load capacity components in the directions of Wx and Wy 

of the bearing center line and the normal to it: 
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The attitude angle, ∅, is determined from the two load 

components: 
 

y

x

W
tan

W
   

 

RESULTS AND DISCUSSIONS 

Reynolds equation has been solved using finite 

difference method for the pressure distribution considering 

cavitation effect. Pressure distribution of various 

eccentricity ratios that is, ε = 0.2, 0.4, 0.6 and 0.8 over the 

0 - 360
0
 angle with cavitation phenomenon is shown in 

Figure-4. 

 

 
 

Figure-4. Pressure distribution of various eccentricity 

ratios. 

 

In the Figure-5 maximum dimensionless pressure 

obtained through the numerical method compared with 

Khonsari’s et.al. results. As the eccentricity ratio increase 

maximum pressure increase and the comparison between 

the maximum pressures values of FDM and Khonsari et. 

al. showed that the results was satisfactory. 

 

 
 

Figure-5. Maximum pressure with eccentricity ratios. 

 

As the eccentricity ratio increases cavitation 

angle decreases that indicates as the gap between the 

journal and bearing decreases cavitation angle reduces and 

it starts earlier. Comparison of cavitation angle obtained 

from finite difference method with the Khonsari et. al.[7] 

shown in the Figure-6. 
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Figure-6. Cavitation angle with eccentricity ratios. 

 

Figure-7 shows the polar plot of eccentricity ratio 

verses attitude angel. Attitude angle decreases gradually 

with eccentricity ratio increases. Comparison of attitude 

angle calculated using finite difference method made with 

Khonsari’s et.al. and results showed very good agreement. 

 

 
 

Figure-7. Attitude angle with eccentricity ratio. 

  

There is variation in the cavitation angle 

accordingly change in the L/D ratios. At lower eccentricity 

ratios much variation in cavitation angle, at higher 

eccentricity ratios there is the less variation in cavitation 

angle shown in the Figure-8. 

 

 
 

Figure-8. Variation in cavitation angle with eccentricity 

ratio. 

Figure-9 shows the variation of dimensionless 

maximum pressure with eccentric ratio for different values 

of L/D ratio. As said earlier at for long length bearing 

there is the high maximum pressure value as compared to 

short length bearing and finite bearing maximum pressure 

value in between them shown in Figure 9. As pressure 

increases the load capacity is also increases, that mean 

long bearing having maximum load capacity as compared 

with short and finite length bearing. 

 

 
 

Figure-9. Variation of maximum pressure at L/D =0.5, 1 

& 2 with eccentricity ratio. 

 

Figure-10 shows the comparison of 

dimensionless load capacity of three bearings with various 

eccentricity ratios for different L/D ratios.    
 

 
 

Figure-10. Variation of load capacity with eccentricity 

ratio. 

 

Table-1 contain the dimensionless values of 

bearing parameters obtained through finite difference 

method for finite bearing with Reynold’s boundary 
condition. 
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Table-1. Parameters of finite bearing with Reynold’s boundary condition. 
 

 
 

CONCLUSIONS  

Cavitation effect considered in long and finite 

bearing obtained the parameters compared with literature 

shown good agreement between them and more than 90% 

accuracy was achieved. 

 The static behavior of a cylindrical journal bearing 

has been studied. The fluid film pressure distribution 

was obtained by solving the governing Reynolds 

equation via finite difference method with successive 

over relaxation Method.  

 The optimum over-relaxation factor was found using 

trial and error method, which is exact and thus 

shortens the compilation time of running the program. 

The optimum over-relaxation factor or scaling factor, ω, and value is 1.85. 
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