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ABSTRACT 

This paper presents a short-term, multi-state reliability model for an industrial gas turbine. A new method is 
introduced to define the state boundaries. The transition intensities between any two states are determined from actual 
operation data and a Markov chain embedded in the operation data. The Chapman Kolomogorov equation corresponding to 
N-states is given. The equation can be applied to any gas turbine system. In the current paper, it is applied to a power plant 
having two identical 5.2 MW (nominal capacity at ISO condition) Siemens Taurus 60S gas turbines. The specific model 
included droop and isochronous modes of operation. The results show that the forced outage rates for the two gas turbines 
converge to 0.513 and 0.2661, respectively, when t . Such a model will be applicable for short term planning of the 
operation of gas turbines hence contributing to a saving in life-cycle or maintenance cost. 
 
Keywords: gas turbine, multi-state reliability, short-term reliability, multi-state markov model. 
 
INTRODUCTION 

Gas turbines are in general considered as fast 
starting machines and ideal to reduce carbon footprint. 
With current technology, powers as high as 340MW can 
be generated by a single gas turbine. Reports show that 
efficiencies up to 40% in open cycle and more than 60% in 
combined cycle configuration is possible (Boyc 2012). A 
cross-section of a single shaft gas turbine with the basic 
control and actuator blocks is shown in Figure-1. Main 
thermodynamic and turbomachinary components include 
multistage axial compressor, divergent duct, combustion 
chamber, expander or turbine, and exhaust system. The 
bleed system is also very important in controlling pressure 
surge or choke. 
 

 
 

Figure-1. Single-shaft gas turbine generators (Tamiru, 
Hashim et al. 2011). 

 
Gas turbines are highly specialized machines and 

therefore they often require skilled personnel to carry out 
condition monitoring and reliability predictions. Since 

high reliability is a priority, the maintenance cost for such 
machines makes up major portion of the annual 
maintenance budget.  Main objectives of the maintenance 
strategy are to reduce downtime and increase availability 
and reliability of the machines.   

Gas turbines experience high outage rate and 
extended downtime due to problems in the 
instrumentation, control system or gas path components 
(compressor, combustion chamber and turbine). Excessive 
vibration is a common problem. To combat any problem 
on real-time basis, a health prognostic is considered an 
important part of a proactive maintenance activity. It 
involves online fault detection, fault isolation or 
diagnostics, and prediction of remaining time before the 
system reaches unacceptable level. In line with 
prognostics, it is a regular practice to evaluate reliability of 
the machines for the days, months or years to come. This 
is especially very important in offshore operation where 
getting spare parts on time is commonly a challenge. 
The current paper concentrates on reliability prediction. 
Traditionally, a two state model – fully functional state 
and failed state – is used to form reliability and availability 
models. However, since actual operations are featured by 
part load operation and modes like droop and isochronous, 
the two state idealization is considered inaccurate. As will 
be presented later, industrial gas turbines in fact 
experience multiple operating points due to reasons linked 
to actual performance deterioration and changes due to 
load demand as well as change in environmental 
conditions. The tendency of all these cases to exist 
simultaneously is also high.  

A brief historical review on Multi-State 
Reliability (MSR) is available in (Lisnianski and Levitin 
2003). This covered the years between 1970’s and 2003. 
In (Fazekas and Nagy 2010), multi-state system (MSS) 
models were introduced for a power plant having 
extraction condensing and back pressure turbines.  The 
states were defined based on the data for ambient 
temperature. Recently, Hagifam and Manbachi (Haghifam 
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and Manbachi 2011) showed a MSS model constructed for 
a CHP plant. Their work included the subsystems for 
electricity generation, fuel distribution and heat 
generation. Data quantization is an important step of 
multi-state reliability modeling. In the work of (Lisnianski, 
Elmakias et al. 2012), the operating range is equally 
divided into N regions, each defined by average value.  In 
the work of (Billinton and Weng 2004), however, the 
apportioning method was used to create steady-state multi-
state models. 

The objective of the current paper is to extend 
(Lisnianski, Elmakias et al. 2012) work by considering 
performance indicator based approach to discern the main 
states. In addition to that the effects of droop and 
isochronous operations will be accounted for.  
 
MODEL DEVELOPMENT 

Any gas turbine is featured by three main 
operating regions:  start-up, loaded or steady state, and 
shut-down. When a gas turbine is in steady state region, it 
changes the operating point in response to the load and 
change in environmental conditions. If it is part of a 
cogeneration or a combined heat and power plant, the 
exhaust gas from the gas turbine is used in a heat recovery 
steam generator (HRSG) to generate process steam. 
Synchronization of the gas turbine and HRSG is realized 
by the running the gas turbine in SoLoNOx mode. The 
name SoLoNOx is due to the use of lean premix 
combustion to reduce the formation of greenhouse gases. 
Siemens Taurus 60S gas turbines are known by this kind 
of design. For a load lower than about 50% of the rated 
capacity, the gas turbine is mostly in load control and the 
air flow rate through the system does not vary much but is 
at maximum capacity. At this state, temperature of the 
exhaust gas from the gas turbine is not high enough to run 
the HRSG. By virtue of the facts, it was therefore 
necessary to formulate operating region based model 
structures. Accordingly, we have approached identification 
of the states in the following manner.  
 
Identification of dominant states based on non-
dimensional plots 

To establish the method, first it is assumed that 
there are opN number of operating regions. Secondly, a 

choice is made on two non-dimensional parameters 1 and 

2 , both considered to be suitable for identifying the 

expected stated. For instance, 1 and 2 ,  can be selected 

to be fuel flow rate and rated power since both parameters 
could reflect change in operating point of a gas turbine. 
For the general case, we prefer to keep these parameters 
generic. Given 1 and 2 , our proposed strategy is to 

apply fuzzy sets on the two parameters so that the whole 
operating trajectory is classified into opN regions. An 

example, assuming two fuzzy sets for 1 and three fuzzy 

sets for 2 , is illustrated in Figure-2. The number of fuzzy 

sets is a function of the number of distinguishable regions. 

Now, referring to the case represented by Figure-2, each 

region will be identified as  op
j Nj ,...,2,1)( S .  Using 

)( jΛ to refer to set of all models required to characterize 

region j , we define )( jS as 
 

 )()()( ,, jjj ΛVΨS         (1) 
 

Where,  21,Ψ ; )( jΛ and )( jV are set of 

models and fuzzy sets, respectively, corresponding to 

region j . For a gas turbine )( jΛ could be the superset 

containing models for the gas path, generator coils, 
lubrication system, and start-up system. For the gas path 
only,  
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Where, )(
2

jP , )(
5

jT and )( j
eleW are compressor 

discharge pressure, turbine inlet temperature and electric 
power output, respectively.  For a perfect identification of 
discernable states, the clustering has to be done in a high 
dimensional region defined by the number of measurable 
parameters. In the current paper, we prefer to limit the 
analysis to gas path signals only.  
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Figure-2. Multiple operating regions for a hypothetical 
system (Tamiru 2012). 

 
Data quantization  

The process experienced by a gas turbine is a 
continuous state and continuous time stochastic process 
(Lisnianski, Elmakias et al. 2012). However, handling a 
continuous-state model is a horrendous task.  Hence, to 
use the multi-state model, the continuous signal is replaced 
by the discrete state continuous time model as represented 
by Figure-3. The corresponding multi-state Markov model 
is shown in Figure-4. Once the states are determined by 
the proposed approach, the idea shown in Figure-3 will be 
used to calculate for state transition intensities. 
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Figure-3. Operating trend idealized as stochastic process 
GA(t) (Lisnianski, Elmakias et al. 2012). 

 

 
 

Figure-4. Multi-state markov model for a generic system. 
 

General multi-state markov model 
 The general Chapman Kolomogrov equation for a 
Markov model corresponding to a system having N 
number of discernable states can be stated in matrix form 
as: 
 

Ap
p


dt

d
        (3) 
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The transition intensities in the state matrix A are 
functions of accumulated time for each state T i and 
accumulated number of transitions kij from state i to state j. 
As such,  
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Performance indices 
Performance of the system can be explained by 

considering steady state probabilities, )(lim)(, tptp i
t

iss


 , 

and Forced Outage Rate (FOR). FOR has been used in 
(Lisnianski, Elmakias et al. 2012) to measure reliability of 
a power generating unit. It is defined as the probability 
that the gas turbine stays at state 1 (failed state) at time t 
with the gas turbine initially at state i. That is, 
 

)()( 1 tptFORi           (5) 
 

where pi(0)=1,  and pj(0)=0 ( ij  , j=1,2,…,N) 

 
Solution method  

The Markov model in Equation-3 can be solved 
applying Universal Generating Functions (UGF). In the 
present paper, however, fourth order Runge-Kutta method 
from MATLAB is used to numerically solve the equation 
for a given initial condition.  
 
RESULT AND DISCUSSION 
 
System description 

The models introduced in the previous sections 
are applied to a system having two identical gas turbine 
generators (named as GTG-1 and GTG-2) of 
aeroderivative type. The turbines may be set to work in 
droop or isochronous modes, the selection of which 
dependent on management decision. Nominal capacity of 
one gas turbine is about 5.2 MW. When the gas turbines 
are set to droop and isochronous mode, the one with the 
droop setting is allowed to work with small variation in 
shaft speed (usually a maximum of 5% change from 
nominal) while the shaft speed of the isochronous turbine 
remains constant. With this combination of control, the 
droop turbine delivers the base load while the isochronous 
assumes the responsibility of picking any extra load. 
However, the difference in the powers produced by the 
two turbines may be limited to 500 kW due to a concern 
related to power trip. In a situation where the power 
demand goes beyond 500 kW, the load setting for the 
droop turbine needs to be readjusted. For analysis purpose, 
both conditions need to be considered even though more 
load variation is experienced by the isochronous turbine. 
Known and estimated design point data of the turbines is 
as reported in Table-1. 
 
Table-1. Calculated design point data for taurus 60s-7301 

engine. 
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Figure-5. Actual operation trend for single-shaft gas 
turbine generators. 

 
Calculation of kij and T i 

The calculated values for state transitions and 
sojourn times for each state and corresponding to GTG-1 
and GTG-2 are shown in Table-2 and Table-3, 
respectively. As compared to GTG-1, GTG-2 has stayed at 
one state relatively longer. This is well verified by the fact 
that this particular turbine has been supplying the base 
load by operating in isochronous mode.   

Important aspect of the gas turbines that is worth 
mentioning is the input-output parameter scheduling. Each 
of the gas turbines is featured by variable geometry 
compressors. For a power demand less than 50% from the 
nominal, Variable Inlet Guide Vanes (VIGVs) and first 
three stages of the Variable Stator Vanes (VSVs) are held 
fully open while the fuel flow rate is manipulated to meet 
the load demand. For higher loads, both the VIGV and 
fuel flow rate are controlled to meet the required power. In 
this region, the turbine is on temperature control. Hence, 
on the basis of these and considering normalized power 
and normalized fuel flow rate to apply the concept 
proposed in the methodology, a five state model including 
the droop and isochronous mode of operations has been 
identified, Figure-5. The values reported in Table-2 and 
Table-3 are the results of applying the models presented as 
Equations (1) and (2), and Figure-2. 

 
Table-2. Number of state transitions and cumulated time 

at each state for GTG-1. 
 

 

Table-3. Number of state transitions and cumulated time 
at each state for GTG-2. 

 

 
 
Calculation of probabilities and forced outage rates 

The probabilities and FORs calculated using 
equation (3) and data from Table-2 and Table-3 are shown 
in Figure-6 to Figure-12. Even though the gas turbines are 
identical in design, the results are different for they 
experienced different operating conditions. For initial 
condition p1(0)=p2(0)=p4(0)=p5(0)=0 and p3(0)=1, the 
probability of staying at maximum capacity for GTG-2 
drops fast as compared to the result for GTG-1.  

The graphs for FOR3(t), FOR4(t), FOR2(t), 
FOR5(t), and FOR1(t) are shown in Figure-8 to Figure-12. 
All values for GTG-1 converge to 0.513.  In case of GTG-
2, the convergence is rather at 0.266, which is by 
comparison lower by 51.87%.  

For GTG-2, the maximum for FOR3(t) 
(max{FOR3(t)}) and FOR4(t) (max{FOR4(t)}) are 0.6591 
and 0.513, respectively. GTG-1, on the other hand, 
experienced a corresponding value of 0.2661 and 0.3289, 
respectively. For intermediate states 2 and 5, GTG-2 
features max{FOR2(t)} = 0.6591 and max{FOR5(t)} = 
0.513 while GTG-1 is having max{FOR2(t)} = 0.2661 and 
max{FOR5(t)} = 0.3289. 
 

 
 

Figure-6. State transition probabilities for GTG-1. Initial 
conditions p1(0)=p2(0)=p4(0)=p5(0)=0, and p3(0)=1.  
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Figure-7. State transition probabilities for GTG-2. Initial 
conditions p1(0)=p2(0)=p4(0)=p5(0)=0, and p3(0)=1.  

 

 
 

Figure-8. FOR3(t) as a function of time. Initial conditions 
p1(0)=p2(0)=p4(0)=p5(0)=0, and p3(0)=1. 

 

 
 

Figure-9. FOR4(t) as a function of time. Initial conditions 
p1(0)=p2(0)=p3(0)=p5(0)=0, and p4(0)=1.  

 

 
 

Figure-10. FOR2(t) as a function of time. Initial 
conditions p1(0)=p3(0)=p4(0)=p5(0)=0, and p2(0)=1.  

 

 
 

Figure-11. FOR5(t) as a function of time. Initial 
conditions p1(0)=p2(0)=p3(0)=p4(0)=0, p5(0)=1.  

 

 
 

Figure-12. FOR1(t) as a function of time. Initial 
conditions p2(0)=p3(0)=p4(0)=p5(0)=0, p1(0)=1.  
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 CONCLUSIONS 
The purpose of this paper has been to introduce a 

short-term multi-state reliability model developed for 
industrial gas turbines. A new method for identifying 
dominant states is reported. A power plant having two 
identical gas turbines was considered to demonstrate 
applicability of the proposed method. It can be concluded 
that  
 A multi-state reliability model can be developed from 

actual operation data. To make the model more 
meaningful, it would be better if the states are defined 
on the bases of two or more key performance 
indicators and some kind of clustering method. 

 Even though the gas turbines are identical in design, 
they have demonstrated different probability trends 
for they operated in different extent of droop and 
isochronous modes.  

 Forced outage rate happen to converge to a single 
value regardless of where the system was at initial 
time t.  

 For t, the forced outage rates for the two gas 
turbines converge to 0.513 and 0.2661, respectively. 

The developed model is applicable for short term 
maintenance planning. Nonetheless, enhancement of the 
proposed method through case studies and high 
dimensional clustering methods is recommended in order 
to further validate the model and boost end users’ 
confidence. Another area worth considering in connection 
with the current study is the idea of integrating short-term 
reliability and diagnostic methods. The future work will 
concentrate on the latter case.  
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