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ABSTRACT 

Nowadays, power system operates in a stressed condition and causes the voltage at a load bus to drop to a point 

lower than secure limit. Hence, this research involves development of an adaptive mutation algorithm based multi-

objective for Optimal Reactive Power Dispatch (ORPD) in a power system in order to minimize the total loss and the 

improved voltage stability simultaneously. The Optimal Reactive Power Dispatch problem is formulated as a non-linear 

constrained multi-objective optimization problem. Furthermore, the proposed mutation was applied into the Multi-

Objective Evolutionary Programming (MOEP) in order to optimize the installation of reactive power into the power system 

networks. The method was a test of IEEE 30-Bus RTS systems and the results have been compared with Multi-objective 

Evolutionary Programming based Polynomial Mutation Operator (MOEP-PMO) indicating that MOEP-AMO 

outperformed MOEP-PMO. 

 
Keywords: MOEP, static voltage stability index, BCS, power loss minimization, voltage stability, adaptive mutation operator, 

polynomial mutation pperator. 

 

INTRODUCTION 

The Optimal Reactive Power Dispatch (ORPD) is 

one of the main problems in power system. The optimal 

power flow problem can be divided into two where 

Optimal Real Power Dispatch and Optimal Reactive 

Power Dispatch (ORPD) (J. F. Dopazo and O.A. Klitin, 

1967). Besides that, the reactive power sources which 

highly used in power system are included generators, 

synchronous condensers, capacitor, and tap changing 

transformer (J. Zhu, 2007) (D.P. Kothari and J.S Dhillon, 

2011). However, injecting too much of reactive power 

resulting unnecessary heating and losses in transmission 

loss and causes voltage drops. Hence, the amount of 

reactive power injected into power system should be 

controlled (Bansilal, 1996).  

Therefore, the ORPD problem can be solved 

using two methods such as conventional (Classical) 

methods and intelligent methods. Present days, classical 

methods less likely used to solve the ORPD problem since 

it has poor convergence where they might get stuck if the 

number of variables are large which may cause the 

simulation run very slow (L. Lai and J. T. Ma, 1997). 

Hence, to overcome the inadequacy of classical methods, 

Intelligent Methods based Artificial Intelligence (AI) has 

been introduced in recent years (Kalyanmoy Deb, 2001). 

There are numerous intelligent methods have 

been developed in recent years. There are Artificial Neural 

Networks (ANN), Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO) and Evolutionary 

Programming (EP). Recently, a number of Multi-

Objective Evolutionary Programming (MOEP) has been 

suggested. The main reason of using MOEP is their ability 

to find multiple Pareto-optimal solutions in one single 

simulation run (Mark W. Thomas, 1998). 

Multi-objective optimization is a process to find the value 

of the variables that minimize the objective function, 

namely SVSI and transmission loss while the system is 

operating within its constraint limit (D.Van, 2011). Multi-

objective problems are more difficult to solve compared to 

the single objective since there is no unique solution. 

Instead of one optimal solution, the implementation of 

multi-objective can give a set of optimal solutions. These 

optimal solutions are known as Pareto-optimal solutions. 

The set of all feasible non-dominated solution is referred 

to as the Pareto optimal set, and for a given Pareto optimal 

set, the corresponding objective function values in the 

objective space is called the Pareto front  (R. Armananzas, 

2011). 

Hence, this paper discusses about a new 

optimization technique for ORPD using MOEP. There are 

two main objective function applied in solving ORPD 

problem using MOEP. It is transmission loss minimization 

and voltage stability improvement. Besides that, 

comparative studies were made between Adaptive 

Mutation Operator (AMO) and Polynomial Mutation 

Operator (PMO) for different loading factor. The main 

function of AMO is to automatically updated mutation 

probability based on the feedback information from the 

search space, according to the relative success or failure of 

those chromosomes having “1” or “0” at that locus for 
each generation. Finally, a computer programming was 

written in MATLAB and BCS was obtained.  

 

PROBLEM FORMULATION 

The objective functions are implemented 

simultaneously, namely the voltage stability improvement 

and total power loss minimization in the transmission 

system. 
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Minimization of SVSI 

The objective function which also incorporated in 

the MOEP namely the Static Voltage Stability Index 

(SVSI) (Li Qi, 2001) which can estimate the stability 

margin of the system. The range of SVSI  should be in 

between 0 (no load) and 1 (voltage collapse). The 

decrement in the value of SVSI indicates that the 

improvement of voltage stability in the system. Hence, the 

mathematical formulae of SVSI can be written as  
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where 

 

Rji    =   line resistance 

Xji    =   reactance 

Pij    =   real power at the receiving end 

Qij     =   reactive power at the receiving end  

Vij    =   sending end voltage 

 

Minimization of transmission loss 

Another objective function considered in the 

proposed method is minimizing the transmission power 

losses in the transmission network, while satisfying a set 

of physical and operation, subjected to a set of equality 

and inequality constraints in the power system. The 

mathematical equation of transmission loss can be written 

as, 
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Where 

 

LossKP  = total active power loss in the system 

Vi
 

= voltage magnitude at the sending buses 

Vj = voltage magnitude at the receiving buses 

șij = 
voltage angle difference between bus i and 

bus j 

ns = slack bus number 
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Figure-1. Flow chart of MOEP for ORPD 

implementation. 

 

METHODOLOGY 

This segment presents necessary information 

concerning the development and mathematical problem 

formulation for multi-objective EP technique. 

 

Evolutionary programming 

EP is one of the Evolutionary computation 

methods which have been used for multi-objective 

optimization. In this paper, MOEP is used as a main 

optimization technique to solve optimal reactive power 

dispatch problem in a power system. The optimization 

processes in MOEP evolve by applying a few important 

operator, namely initialization, non-domination sort, 

crowding distance, mutation, combination and tournament 

selection, to all population members until a stopping 

criterion is fulfilled (I. Musirin, 2003).   

The mutation algorithms are focusing on two 

types of mutation operator, namely Adaptive Mutation 

Operator (AMO) and Polynomial Mutation Operator 

(PMO). The flow chart of MOEP is shown in Figure-1 and 

the details about AMO and PMO are described in the 

subsequent sections. 
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Adaptive mutation operator (AMO) 

The main idea of adaptive mutation operator is to 

use information about the differences between the greatest 

(not infinite) and lowest crowding distance value. The 

crowding values obtained from the current stage of the 

evolutionary process. The purpose of crowding distance is 

to provide the diversity in the population. The 

mathematical equation of adaptive mutation operator can 

be written as (N. Srinivas and Kalyanmoy Deb, 2001). 

 ∆   = ݉�� �ሺܿ. ݀ሻ − ݉�݊ ሺܿ. ݀ሻ 

Where: g(x) = 0      if x = ∞ 

=otherwise                                                         (3) 

 

The next step is to use information about the 

current generation j of the evolutionary process. The 

mathematical equation can be written as  

 

Sigm (j) = 1 / (1 + e ^ (-0.07j))                                        (4) 

 

The importance of the above equation (4) is to 

implement a strong mutation in the early stage of EP 

process.  Finally, the controller updates n before the 

implement of mutation in the current generation as  

 

n = sigm (j) / Δ                                                                 (5) 

 

where 

c.d    = crowding distances 

j
 

= current generation 

n = mutation probability index 

 

Polynomial mutation operator (PMO) 

The PMO was first introduced by the Deb and 

Tiwari in equation (6). The mathematical equation shown 

below (K. Visakha, 2004) 

 

Ck = pk + (p
u
k – p

l
k) δk                                                                                    (6) 

 

where 

Ck     = Child 

p
u

k    = parent with upper bound on the parent 

component 

p
l
k    = parent with lower bound on the parent 

component 

δk     = small variations 

 

The small variations, δk is obtain from the following 

mathematical equation as shown below 

 

δk  = (2rk) ^ ( 1 /  (Șm + 1)) – 1              if rk < 0.5 

δk = 1 – [ 2 ( 1 – rk)] ^ ( 1 ^ (Șm + 1))   if rk > 0.5            (7) 

 

rk   is a random number between ( 0, 1) and Șm is a 

mutation distribution index. 

 

Tournament selection 

The offspring produces from the mutation 

process are combined with the clone parent to undergo a 

selection process in order to identify the candidates that 

have the chance to be transcribed into the next generation. 

From all the individuals of the offspring population, the 

best N individuals are selected according to a selection 

scheme to form the parent population for the next 

generation. The selection technique used here is the 

tournament scheme. In this case, the populations of 

individuals with better fitness function are sorted in 

ascending order to imply SVSI minimization and loss 

minimization. The first half or the population would be 

retained as the new individuals or parent for the next 

generation and the others will be removed from the pool. 

The process is continued until a convergence is reached. 

The convergence criterion is duly specified by the 

difference between the maximum and minimum objective 

function (fitness) to be less than 0.0001. The mathematical 

equation of tournament selection given as  

 

fitnessmax – fitnessmin ≤ 0.0001                                          (8) 

 

Best compromise solution (BCS) 

Optimization of multi-objective using EP 

produces a set of Pareto optimal solution which one 

objective cannot be improved without sacrificing other 

objective. From the Pareto- optimal set of non-dominated 

solutions, the proposed method select one solution for the 

decision maker as the BCS. The mathematical formulae of 

BCS as [16] 
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where 

M = number of non-dominated solution 

Nobj = number of objective function 
k

iF  = fitness value of i
th

 solution of k
th

 

objective 
kFmax

 = maximum fitness value of k
th 

objective 

function 

βi = normalize membership function 

βi  = fuzzy of the non-dominated solution 

 

RESULT AND DISCUSSIONS 

The results have been obtained from the 

developed algorithm for multi-objective optimal reactive 

power dispatch based on evolutionary programming. The 

test was conducted on the IEEE-30-bus system which 

consists of 6 generator buses, 25 load buses along with 41 

interconnected lines. The base power is 100MVA.  
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The following parameters are used in the multi-

objective AMO and PMO 

 

Population Size = 100 

Generation = 100 

Distribution index for mutation = 20 

 

The results are divided into two categories. The 

first part presents the results for ORPD before 

implementation of MOEP while the second part presents 

the result of ORPD after the implementation of Adaptive 

Mutation operator (AMO) and also Polynomial Mutation 

Operator (PMO) based MOEP. In addition, the developed 

algorithm tested on bus 26 for loading variations 30 

MVAr. The simulation results are tabulated in Table-1. 

Based on Table-1, the analysis shows that the 

total transmission loss for Adaptive Mutation Operator 

was lower compared to the Polynomial Mutation Operator  

where 9.66 MW for AMO 11.96 MW for PMO at a 

loading factor of 30 MVAr. It proves that, the total 

transmission loses have been minimized by using ORPD 

based MOEP-AMO. Apart from that, when the total 

transmission loss is 12.53 MW then SVSI value is 0.2708 

nevertheless when the transmission loss drop to 9.66 MW 

then the SVSI value augmented to 0.3405. The above 

description clearly shown in Figure 2. 

Figure-2 shows the Pareto front for SVSI and 

transmission losses obtained using MOEP-AMO for 

ORPD at loading variation 30 MVAr. It is observed that 

the SVSI and transmission loss values, decreased with 

respect to loading factor after the implementation of 

MOEP-AMO in the system.  As highlighted in the Table-

1, the best SVSI value is 0.2708 while the best 

transmission loss is 9.66 MW. Table-2 shows the 

comparison result for the best compromise solution for 

different mutation operators, namely AMO and PMO 

using MOEP for the implementation of ORPD. From the 

table, the analyses are verified from the three aspects in 

terms of SVSI value, transmission loss and amount of non-

dominated solutions. Furthermore, when the load is 

subjected to bus 26, it shows that only 30 non- dominated 

solutions distributed along the Pareto Front using MOEP-

PMO. However, the implementation of Adaptive Mutation 

Operator in MOEP has obtains 67 non-dominated 

solutions along the Pareto Front.  

As highlighted in the Table-2, it is observed that 

MOEP using AMO is better than MOEP based PMO since 

MOEP-AMO managed to improve the SVSI and 

transmission losses simultaneously as compared to 

MOEP-PMO in the system where the reduction of loss in 

percentage is 62.3934 % for MOEA based AMO. 

 

Table-1. Result of pre and post AMO and PMO based MOEP at bus 26. 
 

Units 

(in MVAr) 

Pre- 

ORPD 

Post MOEP-AMO Post MOEP-PMO 

minimum 

SVSI 

minimum 

Transmission 

Loss 

BCS 
minimum 

SVSI 

minimum 

Transmission 

Loss 

BCS 

Qg2 64.029 0.363 13.061 12.018 0.367 17.973 14.727 

Qg5 38.811 0.287 11.029 0.278 0.301 12.079 0.108 

Qg8 57.976 0.288 12.174 13.085 0.345 18.949 13.208 

Qg11 22.691 0.342 10.261 10.002 0.426 10.096 13.961 

Qg13 19.171 0.298 11.213 0.343 0.400 12.634 0.346 

SVSI 0.4934 0.2708 0.3405 0.2560 0.3450 0.2005 0.2866 

Trans. Loss (in 

MW) 
25.82 12.53 9.66 9.71 13.23 11.96 10.70 

 

Table-2. Best Compromise solution for ORPD when bus 26 was reactively loaded. 
 

Test bus Technique 
Non dominated 

solutions No. 
SVSI 

Transmission loss 

(in MW) 

Percentage of 

loss (%) 

26 
MOEP-AMO 67 0.2560 9.7141 62.3934 

MOEP-PMO 30 0.2886 10.7031 58.5472 
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Figure-2. Pareto front for SVSI and transmission loss 

obtained using MOEP-AMO for ORPD at 30 MVAr. 

 

CONCLUSIONS 

This paper has presented that MOEA-AMO for 

the combination of loss minimization and voltage 

improvement as an objective function for the IEEE-bus 

RTS system with bus 26 subjected to loading condition. 

The Pareto-optimal front has been obtained in all schemes 

and the best compromise solution shows the promising 

results where MOEP-AMO and MOEP-PMO successfully 

improved the SVSI value and reduced the transmission loss 

values in the system. From the result, it can be concluded 

that as compare with both mutations, it was found out that 

MOEA-AMO is outperformed MOEP-PMO in most cases. 
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