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ABSTRACT 

A helical gear is crowned in both the cross-profile and longitudinal directions called a double-crowned gear. The 
tooth surface of the gear can be generated by hobbing, shaving, honing processes. In this paper, the hobbing process is used 
for double-crowning the tooth surface of work gear with three different hobbing methods included conventional method, 
variable tooth thickness (VTT) method and modifying the work gear rotation angle method. A computer simulation 
example is implemented to compare the meshing-conditions, contact ellipses, and transmission errors under various 
assembly errors of the double-crowned gear pairs that are generated by the three hobbing methods. 
 
Keywords: double crowned gear, modified rotation angle, tooth contact analysis, contact ellipse, transmission error. 
 
INTRODUCTION 

The double-crowned helical gear surfaces are 
particularly important for misaligned assembly gear pairs 
that improve bearing contact and reduce noise. One of the 
most productive and economical methods for 
manufacturing such gears is hobbing. By conventional 
method, two crowning processes are used to generate 
double-crowned tooth flanks on a helical gear. One 
crowning process is accomplished in the cross-profile 
direction by modifying the hob cutter profile to a parabolic 
curve and the other is achieved in the longitudinal 
direction by varying the center distance between the hob 
and work gear. However, it induces twisted flanks on the 
generated work gear’s tooth surfaces. By variable tooth 
thickness (VTT) hobbing method, the standard hob cutter 
must be reground and it increases production costs. In this 
paper, a hobbing method for double-crowning the tooth 
flank of helical gears by modifying the work gear rotation 
angle without modifying the hob cutter tooth profile or 
varying the center distance during the gear hobbing 
process is applied. 

The overall geometry, design, and manufacture of 
a conventional involute helical gear are detailed in 
textbooks by Litvin and Fuentes [1]. In 2001, Litvin et al. 
[2] patented a design for helical and spur gear drives with 
double-crowned pinion tooth surfaces that generate a 
predesigned parabolic transmission error function in the 
meshing process to reduce vibration and noise of a mating 
gear set. Litvin et al. [3] also proposed a method for 
modifying the conventional involute helical gear by 
conjugating a double-crowned gear with a conventional 
helical involute gear. Litvin et al. [4] outlined a new 
topology of modified helical gear tooth surfaces based on 
profile and longitudinal crowning. This latter is used 
involute and crowned zones to localize the bearing contact 
in the presence of misalignments. Subsequently, Wang and 
Fong [5] proposed a novel face-hobbing method to 
generate spur gears using lengthwise crowning by two 
head cutters that formed imaginary generating rack with 
cycloidal lengthwise tooth traces. Winkel [6] then 

proposed a special profile modification in hob finishing 
that produces topological tooth flank modifications with 
free of twist. More recently, Hsu and Fong [7] patented the 
design of a longitudinally variable tooth thickness (VTT) 
hob and a hobbing method with diagonal feed that needs 
no variation of center distance. Of particular relevance to 
our verification techniques, Tsay [8], in a much earlier 
paper, developed a tooth contact analysis computer 
program for simulating gear meshing and bearing contact, 
and investigated the influence of gear misalignment on 
kinematic errors. Lastly, Hsu and Su [9] investigated the 
gear tooth surface topologies, contact ellipses, and 
transmission errors of work gear pairs generated by a 
modified hob with variable tooth thickness. Tran et al. [10, 
11] proposed two novel hobbing methods to generate anti-
twist tooth flanks of the helical gear in longitudinal tooth 
crowning. And Tran et al. [12] analysed the contact 
ellipses and transmission errors for a crowned gear pair 
that is generated by a dual-lead hob cutter. 

This paper studies the effects of assembly error 
conditions on the tooth contact ellipses, contact points, and 
transmission errors in the meshing of the work gear pair. 
These errors have much effects on the dislocation of the 
center contact point particularly the vertical misaligned 
angle and the horizontal misaligned angle. Transmission 
errors of the gear pairs are in fact a parabolic function, and 
the maximum magnitude of transmission errors are 
negligible. 
 
COMPUTER SIMULATION OF MESHING AND 
TOOTH CONTACT ANALYSIS 

Tooth contact analysis is usually used to verify 
the contact pattern and kinematic characteristics of 
meshing gear pairs that includes the contact point path and 
contact ellipses. We simulate the conditions of meshing 
and contact [1] by applying the tooth contact analysis 
(TCA) to the meshing gear pair composed of a standard 
involute helical gear 3 and the proposed double-crowned 
involute helical pinion 2, whose tooth surface mating 
equations are represented in the same coordinated system. 
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The coordinate systems for gear meshing are shown in 
Figure-1, wherein coordinate systems 2 2 2 2( , , )S x y z  and 

3 3 3 3( , , )S x y z  are rigidly connected to the double-crowned 

helical pinion 2 and standard involute helical gear 3, 
respectively. The auxiliary coordinate systems 

( , , )h h h hS x y z , ( , , )i i i iS x y z , and ( , , )j j j jS x y z  are used 

for simulating gear set assembly errors between the 
double-crowned helical pinion 2 and standard involute 
helical gear 3, including center distance error E , 
horizontal misaligned angle h  in the axial direction, 

and vertical misaligned angle v  in the radial direction.  

By applying the homogeneous coordinate 
transformations method, transforming from the coordinate 

system 2 2 2 2( , , )S x y z
 to fixed coordinate system  

( , , )h h h hS x y z , the tooth surface equations and surface 

unit normal of the pinion 2 can be represented in the fixed 

coordinate system hS  as follows:  

 
(2) (2)

1 2 2 2 11 1 1 1 1 1( , ) ( ),, , , , ( ) , , , , ( )h ha au v z t u v z t   r M r     (1) 

 
(2) (2)

1 2 2 2 11 1 1 1 1 1( , ) ( ),, , , , ( ) , , , , ( )h ha au v z t u v z t   n L n     (2) 

 
where 2 2,h hi ij jM M M M                                  (3) 
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vector’s transformation matrix 2hL  is the sub-matrix of 

2hM  by deleting the last column and row.  

After some mathematical operations, the locus 
and unit normal vector of involute helical pinion 2 can be 
simplified as: 
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1 1 1 1 2
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where 
 

 
(2)

2 2 2 2 2 2 2 2 2cos ( cos sin ) sin [ cos sin ( cos sin )],hx v x y v z h h y x                                                               (9) 

 
(2)

2 2 2 2 2sin cos ( cos sin ),h h hy z y x                              (10) 

 
(2)

2 2 2 2 2 2 2 2 2cos cos sin ( sin cos ) cos sin ( sin cos ),hz z v h v y x v h x y                                  (11) 

 
( 2) 2 2 2 2 22 2 2 2cos ( cos sin ) sin [ cos sin ( cos sin )],
h

x y z y xx
n v n n v n h h n n                                  (12) 

 

( 2 ) 2 2 22 2sin cos ( cos sin ),
h

z y xy
h h nn n n                 (13) 

 
(2) 2 2 2 2 22 2 2 2cos cos sin ( sin cos ) cos sin ( sin cos ).
h

z y x x yz
n n v h v n n v h n n                    (14) 

 
Similarly, the tooth surface equations and surface 

unit normal of the gear 3 can be represented in the fixed 
coordinate system ( , , )h h h hS x y z  as follows: 

 
(3) (3)
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and 
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.
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Vector’s transformation matrix 3hL  is the sub-

matrix of 3hM  by deleting the last column and row.  

After some mathematical operations, the locus 
and unit normal vector of standard involute helical gear 3 
can be simplified as: 
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where 
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.
h

zz
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According to the conditions of meshing and 

contact of an involute helical gear pair, the mating 
surfaces must satisfy the condition of tooth continuous 
tangency at the point of contact. Thus the tooth surfaces of 
the pinion 2 and gear 3 must have a common contact point 
that can be determined at their contact point by the 

position vectors (2)
hr and (3)

hr , as shown in Eq. (28), and a 

common unit normal vector (2)
hn  and (3)

hn , as shown in 

Eq. (29). These relations are expressed as follows: 
 

(2) (3)
1 1 1 1 2 3 3 3 3( , , , , ( ), ) ( , , , ),ah hu v z t u v    r r   (28) 

 
(2) (3)

1 1 1 1 2 3 3 3 3( , , , , ( ), ) ( , , , ).ah hu v z t u v    n n   (29) 

 

In three-dimensional space, Eq. (28) contains 
three independent equations and Eq. (29) contains two 
independent equations because it is constrained by the 

relation of the unit normal vector (2) (3) 1h h n n . So we 

have the five independent equations together with the two 
equations for meshing between the surfaces of the rack 
cutter and blank pinion, and rack cutter and blank gear and 
two equations for meshing between the surfaces of the hob 
cutter and work [16]. Therefore, a system of nine 
independent equations with ten unknowns, 1u , 1v , 1 , 1, 

( )az t , 2 , 3u , 3v , 3 and 3 , can be established. The 

variable 2 can be considered an input variable, leaving 

other nine variables to be solved by nine independent 
equations with nine unknowns. 
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Figure-1. Simulation of meshing gear pairs with gear 
assembly errors. 

 
CONTACT ELLIPSE ANALYSIS 

Under applied load, the instantaneous contact of 
pinion 2 and gear 3 surfaces at a point is spread over an 
elliptical area due to elasticity of tooth surfaces. The 
symmetry center of the instantaneous contact ellipse 
coincides with the theoretical tangency point. The bearing 
contact is formed as a set of contact ellipses. The 
orientation and dimensions of the contact ellipses on 
standard involute gear 3 surface are determined by 
considering the elastic deformation of the pinion 2 and 
gear 3 surfaces at the theoretical point of tangency M ( ) , 

as shown in Figure-2. The elastic deformation is expressed 
as follows: 
 

1 2,   
      

(30) 
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where 1  and 2 are deformations of contacting pinion 2 

and gear 3 surfaces at common contact point M, 
respectively. The elastic deformation depends on the 
applied load and considers as a given value ( 0.006 )mm  . 

 

 
 

Figure-2. Elastic deformations of the pinion 2 and gear 3. 
 

In addition, the contact ellipse also depends on 
the principal curvatures of the contacting surfaces, angle 

1  is formed between the unit vectors of the principal 

directions (2)
1e and (3)

1e that represent the principal 

directions on the surfaces of pinion 2 and gear 3, as shown 
in Figure-3. 
 

2b
1

(2)
1e

(3)
1e

 
 

Figure-3. Parameters of contact ellipse on the gear 3. 
 

The locus 3r  and unit normal vector 3n  of the 

standard involute gear 3 are expressed in Eqs. (20) and 

(21), respectively. The principal curvatures (3)
fk  and (3)

hk  

of the standard involute gear 3 at the contact point M, and 

the unit vectors (3)
fe  and (3)

he of surface can be determined 

from the following system of equations 
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The locus 2r  and unit normal 2n  of the pinion 2 

are expressed in Eqs. (7) and (8), respectively. The 

principal curvatures (2)
fk  and (2)

hk  of the pinion 2 at the 

contact point M can be determined from the following 
system of equations: 
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where
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The angle 1 , formed by two principal directions 
(2)
1e and (3)

1e , is determined by using the equation as 

follows: 
 

(2) (3)
2 1

1 (2) (3)
1 1

.
arctan ,

.


 
   

 

e e

e e
     

(44)

 
 
where the principal directions (2)

1e , (2)
2e and (3)

1e  are 
(3) (2)
1 ,fe e

 
(2) (3)
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32 ,ihe e L  3iL  is vector’s 

transformation matrix.
 The orientation of the contact ellipse is 

determined with angle 1 , as shown in Figure-3, and this 

angle can be represented by the following equation: 
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The axes of the contact ellipse are determined as 

follows: 
 

1
1

2 2 ,a
A




           

(47) 

and 

 

1
1

2 2 ,b
B




      

(48) 

 
where 
 

2 2
1 2 3 2 2 3 1 3

1
2 cos 2 ,

4
A k k g g g g       

  
(49) 

 

2 2
1 2 3 2 2 3 1 3

1
2 cos 2 ,

4
B k k g g g g       

  
(50)

  

and ( ) ( ).i i
i f hk k k 

 
( 2,3)i       (51) 

 
 
 
 

TRANSMISSION ERRORS 

The gear’s rotational angle 3  is a function of the 

pinion’s rotational angle 2  and this function can be 

denoted as 3 2( )  . Under the ideal meshing condition 

(i.e., without assembly errors), the gear’s rotational angle 
is a linear function and equals the product of pinion’s 
rotational angle and the pinion-gear ratio that can be 
expressed by 
 

2
3 2 2

3
( ) ,

N

N
         (52) 

 
where 2N and 3N denote the teeth numbers of the pinion 2 

and gear 3, respectively. 
Under a real meshing condition with assembly 

errors and manufacturing errors, the function 3 2( )   is a 

linear discontinuous function and its deviation from the 
linear function is defined as the transmission errors of the 

mating gear pair 3 2( )   that can be expressed as 

follows: 
 

2
3 2 3 2 2

3

( ) ( ) .
N

N
            (53) 

 
This linear discontinuous function can be 

absorbed by a predesigned parabolic function of 
transmission errors. This is the key for reduction of noise 
and vibration of gear drives. The parabolic function of 
transmission errors can be obtained by tooth crowning in 
cross-profile direction of the pinion 2. The predesigned 

parabolic function of transmission error 3 2( )  , inducing 

by assembly errors of an involute helical gear set, is 
determined by: 
 

2
3 2 2( ) ,pra          (54) 

 
The double crowning method also allows us to 

obtain a predesigned parabolic function of transmission 
error 3 2( )   induced by assembly errors of the involute 

helical gear set: 
 

22
3 2 3 2 2 2

3

( ) ( ) pr
N

a
N

              (55) 

 
where pra  is a parabolic coefficient of the transmission 

error function, and 3 2( )  is the gear’s rotation angle 

represented as a function of the pinion’s rotation angle 

2( ) . 

 
NURMERICAL EXAMPLE 

The effects of assembly error conditions on the 
tooth contact ellipses, contact points on gear 3, and 
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transmission errors in the meshing of the work gear pair 
are investigated. The basic parameters for the double-
crowned helical pinion 2 and standard helical gear 3 and 
the basic coefficients for Cases A, B and C are given in 

Tables 1 and 2. Our analysis focuses on three specific 
aspects: the gear meshing center distance error, the vertical 
misaligned angle, and the horizontal misaligned angle. 

 
Table-1. Basic parameters for the double-crowned helical pinion 2 and standard helical gear 3. 

 

Gear pair data Gear 2 Gear 3 

Number of teeth ( 2N ) 60 60 

Normal module ( pnm ) 2.5 2.5 

Normal circular tooth thickness ( 2pns ) 4.712 mm 4.712 mm 

Normal pressure angle ( pn ) 20  20  

Face width 14 mm 14 mm 

Helix angle ( 2p ) 25 R.H. 25 L.H. 

Outer diameter 170.506mm 170.506mm 

Form diameter 160.648mm 160.648mm 

Operating center distance for gear pairs 
meshing 

165.507mm 

 
Table-2. Basic coefficient data. 

 

 a  (mm-1) b (mm-1) c  d  

Case A 30.70 10  0 -2.519 0.002 

Case B 0 88.10 10  -2.519 0.002 

Case C 0 0 0 0 

 
Gear meshing center distance error 

The shifts of bearing contacts and transmission 
errors caused by the gear meshing center distance error 
( 0.5 ( / 0.3%)E mm E E    ) in Cases A, B and C are 

shown in Figures 4 and 5. In this case, the contact ellipses 
are drawn correspondingly to the rotation angle of pinion 2 

from 3.6o to 2.4o in Cases A and Case B and from 3.2o
to 2.8o in Case C, as shown in Figure-4. The distributions 

of contact points in the longitudinal direction and 
dislocations of the center contact points for the three cases 
have small changes. It shows that the double-crowned 
work gears for the three cases are not sensitive to the 
center distance error. Figure-5 reveals that the maximum 
magnitude of transmission error in Case C 

3( 4.9 sec)arc    is much lower than those in Cases A 

3( 8.4 sec)arc   and B 3( 11.7 sec)arc   . 

 

3.6o
2.1o

0.6o
0.9o 2.4o

3.6o
2.1o

0.6o
0.9o

2.4o

3.2o
1.7o

0.2o
1.3o
2.8o

 
(a)Case A                                          (b)Case B                                              (c)Case C 

 

Figure-4. Simulated tooth contact ellipses and contact points of the gear pairs under center distance error 0.5E mm  . 
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3(arcsec)

2(Degree)

3(arcsec)

2(Degree)

3(arcsec)

2(Degree)  
(a)Case A                                          (b)Case B                                              (c)Case C 

 

Figure-5. Transmission errors of the gear pairs under center distance error 0.5E mm  . 

 
Vertical misaligned angle 

The influences of a vertical misaligned angle 

( 0.1v   ) on Cases A, B and C are illustrated by 

Figures 6 and 7. The contact ellipses are drawn 
correspondingly to the rotation angle of pinion 2, Cases A 

2( 2.7 ,...,3.3 )o o    , Case B 2( 3.1 ,...,2.9 )o o     and 

Case C 2( 3.3 ,...,2.7 )o o    , as shown in Figure-6. 

According to Figure-6, the distributions of contact points 
in the longitudinal direction for the three cases have small 
changes, but the dislocations of the center contact points in 
Cases A and B increase from 0.01cL mm (Figure-4) 

under the center distance error to 0.99cL mm (Figure-

6(a)) and 0.79cL mm (Figure-6(b)) with the vertical 

misaligned angle. Such center contact point dislocation in 
Case A is particularly affected by the vertical misaligned 
angle inducing edge contact in gear 3. The double-
crowned work gear in Case C is also quite sensitive to the 
vertical misaligned angle, as show in Figure-6(c). 
However, the distributions of contact points and contact 
ellipses in this case are quite small, and can avoid the 
inducement of edge contact on gear 3. Once again, as 
shown in Figure-7, the maximum magnitude of 
transmission error in Case C 3( 4.8 sec)arc    is smaller 

than those in Case A 3( 8.3 sec)arc   and Case B

3( 11.8 sec)arc   . 

 

2.7o
1.2o

0.3o1.8o 3.3o

3.1o
1.6o

0.1o
1.4o

2.9o

3.3o
1.8o
0.3o
1.2o
2.7o

 
(a)Case A                                          (b)Case B                                              (c)Case C 

 

Figure-6. Simulated tooth contact ellipses and contact points with vertical misalignment 0.1v   . 
 

3(arcsec)

2(Degree)

3(arcsec)

2(Degree)

3(arcsec)

2(Degree)  
(a)Case A                                          (b)Case B                                              (c)Case C 

 

Figure-7. Transmission errors of the gear pairs with vertical misalignment 0.1v   . 

 
Horizontal misaligned angle 

The horizontal misaligned angle ( 0.1h   ) has 

the greatest effect on the dislocation of the center contact 
point in three cases, as shown in Figure-8. Wherein, the 
contact ellipses are drawn correspondingly to the rotation 

angle of pinion 2, Cases A 2( 2.1 ,...,3.9 )o o    , Case B

2( 3.1 ,...,2.9 )o o     and Case C 2( 4.2 ,...,1.8 )o o    . 

Specifically, the dislocations of the center contact points in 
Cases A and B increase greatly from zero (Figure-4(a) and 
Figure-4(b)) to 2.83 mm (Figure-8(a)) and 2.32 mm 
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(Figure-8(b)), causing the edge contact on gear 3. The 
dislocations of the center contact point in Case C also 
increases greatly from zero (Figure-4(c)) to 1.97 mm 
(Figure-8(c)). However, the distributions of contact points 
and contact ellipses in this case are very small, and can 
avoid the inducement of edge contact on gear 3. Yet again, 

the transmission error in Case C 3( 4.9 sec)arc   is 

smaller than those in Cases A 3( 8.2 sec)arc   and B

3( 11.8 sec)arc   , and this can be negligible, as shown 

in Figure-9. 

 

2.1o
0.6o

0.9o 2.4o
3.9o

3.1o
1.6o

0.1o
1.4o

2.9o

4.2o
2.7o

1.2o
0.3o
1.8o

 
(a)Case A                                          (b)Case B                                              (c)Case C 

 

Figure-8. Simulated tooth contact ellipses and contact points with horizontal misalignment 0.1h   . 

 
3(arcsec)

2(Degree)

3(arcsec)

2(Degree)

3(arcsec)

2(Degree)  
(a)Case A                                          (b)Case B                                              (c)Case C 

 

Figure 9. Transmission errors with horizontal misalignment 0.1h   . 

 
CONCLUSIONS 

The effect of the assembly errors on the 
distribution of contact points in the longitudinal direction 
is small in the conventional; VTT and proposed methods. 
These errors do have a notable effect on the dislocation of 
the center contact point, which is the main cause of edge 
contact on the double-crowned gear in the conventional 
and VTT cases. Such center contact point dislocation is 
particularly affected by the vertical misaligned angle and 
the horizontal misaligned angle and is not sensitive to the 
center distance error. The transmission errors of the 
proposed gear set are in fact a parabolic function, and the 
maximum magnitude of transmission errors in Case C (our 
proposed method) is not only smaller than those in Cases 
A (conventional) and B (VTT) but negligible. 
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