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ABSTRACT 

In the petroleum literature, non-Darcy flow is assumed to be a near wellbore phenomenon; consequently a gas 

reservoir could be divided into Darcy’s flow domain and non-Darcy’s flow domain. Assume only radial flow occurs in the 
near wellbore non-Darcy’s flow domain, and assume the radius of this domain is integer multiple of wellbore radius, Lu et 

al. (2011) proposed binomial deliverability equations for partially penetrating vertical gas wells and horizontal gas wells. 

By solving a set of simultaneous equations with respect to non-Darcy’s flow domain rn and flow rate at standard conditions 

Qsc, this paper presents new binomial deliverability equations for horizontal gas wells, which can account for the 

advantages of horizontal gas wells where non-Darcy effect is less pronounced than that in vertical gas wells. The 

calculation results show that non-Darcy flow domain radius is smaller than 15 times wellbore radius, which further proves 

turbulent effect only occurs in the vicinity of wellbore. The calculation results also show that the production rate loss of 

horizontal wells caused by the turbulent flow is small. 

 
Keywords: non-darcy flow, productivity, reservoir area, stabilization. 

 

1. INTRODUCTION 

Borisov (1964) firstly studied the performance of 

a horizontal well and how it produced differently from the 

vertical well. The equation Borisov derived makes the 

horizontal well perform like an infinite-acting fracture. 

Joshi (1986) developed an equation for horizontal well 

productivity through dividing the 3-D model into two 2-D 

mathematic problems. Babu (1989) developed a horizontal 

well performance equation for semi-steady state flow and 

a uniform flux assumption at the wellbore instead of 

infinite conductivity. This equation is the first to attempt 

to deal with a changing wellbore pressure, by using the 

uniform flux assumption, i.e. constant influx rate. Lu 

(2001) proposed productivity formulae for horizontal 

wells based on the average potential and the point 

convergence pressure. As opposed to Joshi’s productivity 
equation which is obtained from a simplified two-

dimensional model, Lu’s equations are derived from a 

three dimensional solution of the Laplace equation. Lu 

(2003) proposed productivity formulae for horizontal 

wells in steady state with circular cylinder drainage 

volume. Lu concluded that if the drainage volume is a 

circular cylinder with gas cap or bottom water, the fluid 

from the top or bottom boundary flows into a horizontal 

well approximately vertically. Gas cap drive or bottom 

water drive is the main drive mechanism. Even if there is 

edge water drive, it has little influence on the well flow 

rate. Escobar and Montealegre-M (2008) provided a 

solution for estimation the productivity index in horizontal 

wells and they proved to provide better results than 

Joshi’s. Lu et al. (2010) pointed out that if the drainage 

volume is a circular cylinder without a gas cap or bottom 

water, the top and bottom boundaries are impermeable and 

only edge water drive is available, and the circular 

cylinder radius plays an important role in well 

productivity. 

The so-called non-Darcy flow effect in a gas 

reservoir has been associated with high gas flow rates. The 

non-Darcy flow in porous media occurs if the flow 

velocity becomes large enough so that Darcy's law for 

pressure gradient is no longer sufficient. To describe the 

nonlinear flow situation, a quadratic term was included by 

Forchheimer to generalize the flow Equation (Lee and 

Wattenbarge, 1996): 

                                                                                 

2  
dP

v v
dr K     (1) 

 

where P is pressure, r is radial distance,ρ is gas density, ȕ 

is gas turbulence factor, νis flow velocity, μ is gas 

viscosity, and K is permeability. Equation (1) is based on 

the assumption that only radial flow occurs in the near 

wellbore non-Darcy’s flow domain.    
Define pseudo pressure as below (Lee and 

Wattenbarge, 1996):  
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where Pwf  is a reference pressure, z is gas deviation factor,  

ψ is pseudo pressure. Consequently, pseudo pressure 
gradient is expressed as follows (Lu et al., 2011): 
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and gas formation volume factor is (Guo and Ghalambor, 

2005) : 
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sc
g

sc

P zT
B

PT
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                                           (4) 

 

where T is reservoir temperature, Psc and Tsc are pressure 

and temperature at standard conditions, respectively. Gas 

density can be calculated by (Guo and Ghalambor, 2005): 

 

28.97 g P

z T


 

                                     (5) 

 

where g is gas specific gravity,   is gas universal 

constant, 8.314 / ( . )J mol K . 

In a radial flow domain, the flow velocity at a 

distance r from the center of a circular drainage area is 

given by (Lu et al., 2011): 

 

(2 )

g sc sc sc

sc p

B Q P TzQQ
v

A A PT rL
  

                   (6) 

 

where A is cylinder lateral area, Q is gas flow rate at 

reservoir conditions,  LP  is well producing length, Qsc is 

well flow rate at standard conditions. Substituting 

Equations (5) and (6) in Equation (3), we obtain (Lu et al., 

2011): 
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      (7) 

 

As shown in Figure-1, assume only radial flow 

occurs in the near wellbore non-Darcy’s flow domain, and 
assume non-Darcy’s flow domain is a circular cylinder 
with height Lp and radius rn, there holds (Lu et al., 2011):  
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where Ψn is pseudo pressure at the outer boundary of non-

Darcy’s flow domain,Ψw is pseudopressure at wellbore. 

Cook (1973) defined the Reynolds number as 

below: 

 
1/2

eynolds 3/215120


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
v K

R                     (9) 

 

 
 

Figure-1.  Schematic of non-darcy flow domain and darcy 

flow domain. 

 

Cook (1973) defined the Reynolds number as 

below: 

 
1/2

eynolds 3/215120


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R

                                                    (9) 

 

where Reynolds is the Reynolds number, v is the fluid 

velocity (m/d); K is permeability (μm
2
); ρ is fluid density 

(g/cm
3
); μ is fluid viscosity (mPa.s);  is porosity. 

If using field units, Equation (9) should be 

written as: 

 
8 1/2

eynolds 3/2

1.014 10 v K
R


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
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                               (10) 

 

where v is the fluid velocity (ft/d); K is permeability (mD); 

ρ is fluid density (lbm/ft
3
); μ is fluid viscosity (cp); ϕ is 

porosity. 

If the non-Darcy flow domain is a circular 

cylinder with height L and radius rn , the fluid velocity on 

the lateral surface of the circular cylinder can be expressed 

as: 

 

 
2 n

Q Q
v

A r L
 

                                           (11) 

 

where Q is the production rate, A is the lateral area. In 

field units, Equation (11) can be expressed as below: 

 

159154.94

n

Q
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                                             (12)

 

 

Substitute Equation (12) into Equation (10), the 

Reynolds number can be written as:  
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                (13) 

 

where Q is the production rate (MMscf/d), K is 

permeability (mD); ρ is fluid density (lbm/ft
3
); μ is fluid 

viscosity (cp); ϕ is porosity. L is the length of the circular 
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cylinder (ft); rn is the radius of non-Darcy flow circular 

cylinder (ft). 

By solving a set of simultaneous equations with 

respect to non-Darcy’s flow domain rn and flow rate at 

standard conditions Qsc, this paper presents new binomial 

deliverability equations for horizontal gas wells, which 

can account for the advantages of horizontal gas wells 

where non-Darcy effect is less pronounced than that in 

vertical gas wells. 

 

2. EQUATIONS AND SOLUTIONS 

Figure-2 shows the schematic of a circular 

cylinder reservoir model. In this paper, well model, 

reservoir model, reservoir initial condition and boundary 

conditions are the same as those given in Lu et al. (2011).  

For a point sink at (x’, 0, z’) on the horizontal 
wellbore, there holds, 

 

     

       
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                            (14) 

 

where q*  is point sink mass flow rate, SI unit for q* is 

kg/s, ρ is density, SI unit for ρ is kg/m
3
. Note that, 
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Define average permeability as below: 

 

 1 3
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                    (16) 

 

and define the following dimensionless parameters: 
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Consequently, Equation (14) is changed to, 

 

 
 

Figure-2. Schematic of a horizontal well in a circular 

cylinder reservoir. 
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In steady state, 
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Case 1: The lateral boundary pressure is constant, 

Pe=Pi, the top and bottom boundaries are impermeable, we 

have, 
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Solving the diffusivity equation of a horizontal 

gas well in a circular cylinder drainage volume with 

impermeable top and bottom boundaries, and constant 

lateral boundary, we obtain (Lu, 2003): 

  

3 3
D

D

L

H H 
 
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                         25(a) 

 

where  

 



                                    VOL. 11, NO. 15, AUGUST 2016                                                                                                        ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               9431 

2 2 2 4

2 2 2 4

2 5
ln 1 ln 4sin sin

4

4 1 1 1
ln ln ln

4 4 16 2

                               
                 

e w w

e e e e

e

R Z rH

L L H H

R R L R R

L R L L L

  25(b) 

 

From Equation (25a), Qsc can be solved,     
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In the Darcy flow domain: 
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If there exists non-Darcy’s flow area near 
wellbore, combine Equation (27) and Equation (8), we 

obtain: 
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For Case 1, the binomial deliverability equation 

in field units can be expressed as below:  
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If there does not exist non-Darcy flow near the 

wellbore, the deliverability equation for Case 1 is: 
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For Case 2, the binomial deliverability equation 

in field units is expressed as below: 
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If there does not exist non-Darcy flow near the 

wellbore, the deliverability equation for Case 2 is: 
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


sc

w w

KL
Q

T H r Z H
  (32) 

 

3. SENSITIVITY ANALYSIS 

The deliverability equations (considering non-

Darcy flow near the wellbore) for the above two cases can 

be expressed in the following form: 

 
2   e w sc scaQ bQ                                 (33) 

 

Coefficients a and b are actually functions of rn , 

a and b can be expressed as: a = f(rn), b = F(rn). 

Consequently, there holds: 

 
2( ) ( )   e w n sc n scf r Q F r Q                  (34) 

 

If there is non-Darcy flow domain near the 

wellbore, there exists the following relationship between 

rn and Qsc: 
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where Reynonlds  is the critical Reynolds number which is 

between 0.2-0.3. If all the other factors are known except 

for Qsc and rn, from Equation (35), we know that rn is a 

function of Qsc, and the relationship between Qsc and rn can 

be expressed as follows: 

 

  n scr y Q                    (36) 

 

If we combine Equation (36) and Equation (34), 

we can obtain the following set of simultaneous equations: 
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f r Q F r Q
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in which only Qsc and rn are unknown. If all the other 

factors are given, Qsc and rn can be calculated with 

Matlab
®
 codes. 

Using the hypothetical data in Table-1 and the 

method of solving the set of simultaneous equations 
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mentioned above, the following figures give the non-

Darcy radius rn, the production rate considering non-Darcy 

flow Qsc-non-Darcy, and the ratio of Qsc-non-Darcy/Qsc-Darcy with 

various values of payzone thickness H and different values 

of permeability K and horizontal well length L. 

 

 
 

Figure-3. The effects of L on Qsc-non-Darcy and rn  (Case 1). 

 

Table-1. Given Gas Reservoir/Well Data. 
 

rw  (ft) 0.25 ȕ (1/ft) 2x10
8
 

T (ºR) 590 K (mD) 20 

re (ft) 3000 Ȗg 0.65 

μ (cp)
 

0.02
 ΔΨ ( MMpsi

2
/cp )

 
2.55x10

2 

Pw (psi) 500 Pi (psi) 2200 

Zw  (ft) 25 z 0.9 

PSC  (psi) 14.7 TSC  (ºR) 520 

 

3.1. Effects of horizontal well length 

Figure-3 shows the effect of horizontal well 

length L on the non-Darcy radius rn and the production 

rate Qsc-non-Darcy when all the other factors stay constant, 

and the reservoir is with impermeple top and bottom 

boundaries.  

From Figure-3, the production rate Qsc-non-Darcy is 

an increasing function of the horizontal well length L. The 

non-Darcy flow radius rn decreases with the horizontal 

well length L increasing. rn decreases  approximately 3 

times as the well length L increases from 100 ft to 500 ft.  

From Equation (12), when L increases, fluid velocity v 

decreases, which introduces smaller rn. 

Figure-4 shows the effect of horizontal well 

length L on the ratio of Qsc-non-Darcy/Qsc-Darcy when all the 

other factors stay constant. Also, From Figure-4, it is 

noticed that as the horizontal well length L increases, the 

ratio of Qsc-non-Darcy to Qsc-Darcy also increases from 96.75% 

to 99.75%. As shown in Figure-3, the non-Darcy flow 

radius rn decreases when L increases, which means the 

turbulent effect in the vicinity of the wellbore doesn’t get 

more serious with L increasing. The increment of the ratio 

of Qsc-non-Darcy to Qsc-Darcy can be attributed to the fact that 

the negative effect of turbulent flow on the production rate 

is offset by the positive effect of the increasing well 

length. 

 

 
 

Figure-4. The effects of L on Qsc-non-Darcy/Qsc-Darcy (Case 1). 

 

 
 

Figure-5. The effects of H on Qsc-non-Darcy and rn (Case 2). 

 

3.2. Effects of payzone thickness, H 

Figure-5 shows the effect of payzone thickness H 

on the non-Darcy radius rn and the production rate Qsc-non-

Darcy when all the other factors stay constant, and the 

reservoir is with impermeable top boundary, and with 

bottom water drive.  

From Figure-5, it is noticed that the production 

rate Qsc-non-Darcy is a decreasing function of the pay zone 

thickness H. The driving force is from bottom water, when 

the pseudo-pressure difference is fixed, the big H will 

introduce long distance between bottom water and 

wellbore, and will further introduce small pressure 

gradient and descending flow rate Qsc-non-Darcy.  

Consequently, the flow velocity decreases, which means 

the turbulent effect weakens with increasing H. Then non-

Darcy flow radius also decreases as the pay zone thickness 

increases. The non-Darcy radius ranges from 1.1 ft to 0.8 

ft, approximately 4.4 times rw to 3.2 times rw. 
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Figure-6. The effects of H on Qsc-non-Darcy/Qsc-Darcy  

(Case 2). 

 

Figure-6 shows the effect of payzone thickness H 

on the ratio of Qsc-non-Darcy/Qsc-Darcy when all the other 

factors stay constant. From Figure-6, it is noticed that as 

the payzone thickness H increases, the ratio of Qsc-non-Darcy 

to Qsc-Darcy also increases from 93.8% to 96.1%. As is 

shown in Figure-5, the non-Darcy flow radius rn decreases 

when H increases from 20 ft to 100 ft, which means the 

turbulent effect in the vicinity of the wellbore weakens 

with H increasing. The increment of the ratio of Qsc-non-

Darcy to Qsc-Darcy can be attributed to the fact that the 

negative effect of turbulent flow on the production rate 

weakens with increasing pay zone thickness H. 

 

3.3. Effects of permeability K 

Figure-7 shows the effect of permeability K on 

the non-Darcy radius rn and the production rate   Qsc-non-

Darcy when all the other factors stay constant, and the 

reservoir is with impermeable top boundary, and with 

bottom water drive.  

From Figure-7, it is noticed that the Qsc-non-Darcy is 

an increasing function of the permeability K, when K 

increases from 20 mD to 100 mD, the Qsc-non-Darcy increases 

from 125 MMscf/D to 582 MMscf/D. When K increases, 

turbulent flow becomes more pronounced, consequently 

the non-Darcy flow radius increases from 0.9 ft to 9.2 ft 

(approximately 3.6 times rw to 37 times rw). Compared to 

payzone thickness H and horizontal well length L, the non-

Darcy flow radius rn is more sensitive to permeability K. 

Figure-8 shows the effect of permeablitity K on 

the ratio of Qsc-non-Darcy/Qsc-Darcy when all the other factors 

stay constant. From Figure-8, it is noticed that the ratio of 

Qsc-non-Darcy to Qsc-Darcy is a decreasing function of the 

permeability K. When K increases from 20 mD to 100 

mD, the ratio of Qsc-non-Darcy to Qsc-Darcy decreases from 

95.2% to 88.2%. The decrease of the ratio is because when 

permeability K increases, the negative effect of turbulent 

flow on production rate becomes more pronounced, which 

will cause an increasing difference between Qsc-non-Darcy 

and Qsc-Darcy. 

 

 
 

Figure-7. The effects of  K  on Qsc-non-Darcy and rn  (Case 2). 

 

 
 

Figure-8. The effects of K on Qsc-non-Darcy/Qsc-Darcy 

(Case 2). 

 

4. COMPARISON BETWEEN HORIZONTAL  

    WELLS AND VERTICAL WELLS 

Using the data in Table-1 and assuming the open 

interval of a vertical well to be 25 ft, the sensitivity 

analysis of the permeability K is conducted for both the 

vertical well and the horizontal well in a cylindrical 

drainage volume with bottom water. 

Figure-9 shows the effect of permeability K on 

the production rate Qsc-non-Darcy when all the other factors 

stay constant. Note that the producing length of the 

horizontal well is 100 ft which is 4 times of the producing 

length of the vertical well.  

From Figure-9, it is observed that when K 

increases from 20 mD to 100 mD,  Qsc-non-Darcy of the 

vertical well increases 3 times (from 50 MMscf/D to 150 

MMscf/D), meanwhile Qsc-non-Darcy of the horizontal well 

increases 4.6 times (from 125 MMscf/D to 575 MMscf/D). 

Thus, the non-Darcy negative effect on production rate for 

the vertical well is more pronounced than that for 

horizontal well. It is concluded that the bigger the 

permeability is, the more obvious advantage the horizontal 

well has over the vertical well in terms of Qsc-non-Darcy.  
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Figure-9. The effects of K on Qsc-non-Darcy of Vertical Well 

and Horizontal Well. 

 

 
 

Figure-10. The effects of K on Qsc-non-Darcy/Qsc-Darcy of 

Vertical Well and Horizontal Well. 

 

Figure-10 shows the effect of permeablitity K on 

the ratio of Qsc-non-Darcy/Qsc-Darcy when all the other factors 

stay constant. When K increases from 20 mD to 100 mD, 
Qsc-non-Darcy/Qsc-Darcy decreases from 95% to 87.5% for the 

horizontal well, meanwhile Qsc-non-Darcy/Qsc-Darcy decreases 

from 50% to 30% for the vertical well.  Qsc-non-Darcy/Qsc-

Darcy for the horizontal well is much higher than the 

vertical well, which means the negative effect on 

production rate caused by the turbulent flow for the 

vertical well is more pronounced. The reason for this 

phenomenon is the producing length of the vertical well is 

much smaller than that of the horizontal well, so even 

though the total production rate of the vertical well is low, 

the production rate of per unit length of the vertical well is 

still higher than that of the horizontal well, in other words, 

the fluid speed around the vertical wellbore is high, which 

causes a more pronounced non-Darcy effect. 

 

CONCLUSIONS 

Based on this study, the following conclusions 

are reached: 

a) By the method of solving a set of simultaneous 

equations, the radius of non-Darcy’s flow domain of a 

horizontal gas well can be calculated. 

b) From sensitivity analysis, mostly the radius of non-

Darcy’s flow domain is smaller than 15 times rw, 

which further proves turbulent flow only occurs in the 

vicinity of a horizontal well. 

c) Of all the factors causing turbulent flow, permeability 

K is the most important one. 

d) From the ratio of Qsc-non-Darcy/Qsc-Darcy of a horizontal 

gas well, it is concluded that the production rate loss 

caused by the turbulent effect is usually no more than 

15%.  

e) As opposed to vertical wells, of which the production 

rate loss caused by the turbulent effect is usually up to 

more than 50% of Qsc-Darcy, horizontal wells have a 

good capability of resisting the negative effect of 

turbulent flow. 

 

Table-2. Units  conversion factors. 
 

Field units SI units 

bbl *0.1589873 m
3
 

cp*0.001 Pa∙s 

ft*0.3048 m 

psi*6894.7259 Pa 

day/86400 s 

gas turbulence factor, 1/m �   porosity,  fraction �   gas viscosity, Pa.s �   gas density, kg/m   ߚ 
 gas specific gravity Λ   a function defined by Equation˄25-b˅ Π   a function defined by Equation˄28-d˅ ȳ   drainage domain Ȳ pseudo pressure, Pa/s   �ߛ 3

 

Nomenclature 

A                 cylinder lateral area, m
2
 

Bg                gas formation volume factor,
3 3/Rm Sm  

H                 pay zone thickness, m 

K                 formation effective permeability, m
2
 

L                 drilled well length, m 

Lp                producing well length, m 

L1                z coordinate of the beginning wellbore point  

     on producing well length, m 

L2                z coordinate of the end wellbore point  

     on producing well length, m 

P                 pressure, Pascal 
Q                gas flow rate at reservoir condition, Rm

3
/s 

Qsc                     gas flow rate at standard condition, Sm
3
/s 

Reynolds             Reynolds number 

                gas universal constant, J/mol.kelvin 

rw                wellbore radius, m 

rn                 non-Darcy flow domain radius, m 

Re                circular cylinder drainage radius, m 

S                 skin factor 

v                flow velocity, m/s 

T                gas temperature, Kelvin 
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Z                gas deviation factor, dimensionless. 

Zw               horizontal well location in vertical direction, m 

e                      external 

i        initial 

n        non-Darcy 

p                 producing 

sc       standard condition 

w       well 
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