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ABSTRACT 

Above ground biomass estimation for hill dipterocarp forest has received much attention in recent years because 
the change of biomass regionally is associated with important components of climate change. Accurate biomass estimation 
is necessary for better understanding of deforestation impacts on global warming and environmental degradation. This 
paper aims to develop allometric equations to estimate biomass in hill dipterocarp forest using satellite image Landsat 8 
OLI. This study was executed in three different Permanent Reserved Forests (PRF) in Kelantan namely Bukit Bakar 
Recreational Forest (BB), Gunung Basor Forest Reserve (GB) and Gunung Stong Forest Reserve (GS). A total of 39 
sampling plot were established. Regression analysis were used to developed several models. Model with NIR band is 
known to be the best model to estimate above ground biomass.  
 
Keywords: above ground biomass, hill dipterocarp forest, above ground biomass, Band 5(NIR). 
 
1. INTRODUCTION 
 
1.1 Background of study 

Vegetation cover or forest acts as major pool of 
carbon which is directly related to biomass productivity. 
The amount of biomass can give an estimation of global 
carbon stock, where by monitoring the changes of biomass 
we can measure carbon loss in the atmosphere. It is 
essential to estimate or calculate the biomass productivity 
for evaluating forest ecosystem production and controlling 
carbon budgets (Zianis and Mencuccini, 2004; Hall et al., 
2006). Gathering an information from aboveground 
biomass (AGB) will help the researcher to understand 
more about climate changes also help them to established 
carbon cycles model (Global Climate Observing System 
(GCOS) 2006).  

Remote sensing was known with it’s capability to 
monitor and gather the data at a large scale, manage to 
capture the variability of the land surface, offer a 
repeatability of data collection which help researchers 
conduct a  time series data analysis. The signals used to 
capture the information are sensitive towards vegetation 
structure such as vegetation cover, density, shadow and 
texture (Baccini et al. 2008) which these parameter are 
related with AGB. Combination of these parameter with 
empirical models, was a common ways to estimate AGB. 
By using regression, a relationship may exist between 
spectral reflectance or vegetation indices and biomass 
(Foody et al., 2003; Lu at al., 2004; Okuda et al 2004).  
There are many optical remote sensing satellite that are 
freely distributed with broadband multispectral sensor 
such as Landsat dataset. These datasets can estimate 
timely and regional scale AGB or carbon estimation 
(Gibbs et al., 2007;  

Hall et al., 2011; Houghton et al., 1996; Vaglio 
Laurin et al 2014) and sustainable forest resources 
controlling and inventory (Næsset, 2007). The latest 
version in Landsat family is Landsat 8 Operational Land 
Imager (OLI) multispectral sensor where promise to 
deliver a number of helpful information for understanding 

regional influence of forest ecosystem to the carbon cycle 
(Dube and Mutanga, 2014). New improvement 
multispectral Landsat 8 sensor provide (i) enhance spectral 
range for certain bands that is crucial for improving the 
vegetation spectral response in near infrared (NIR) and 
panchromatic band, (ii) upgrade radiometric resolution 
from 8 bits to 12 bits which is very helpful in the 
characterization of diverse forest form ( El-Askary et al., 
2014; Pahlevan and Schott, 2013). 

Numerous studies have shown that indices such 
as normalize difference vegetation index (NDVI), spectral 
vegetation index (SVI) and simple ratio (SR) calculated 
using satellite data were useful to estimate leaf area index 
(LAI), biomass and productivity in grassland and forest 
(Cheng and Zhao, 1990; Diallo et al., 1991; Fassnacht et 
al., 1997; Steininger, 2000). Yet, the result using this 
biophysical evaluation in tropical forest are inconsistent. 
Earlier studies found that these indices could not be used 
to calculate this parameter (Lu et al., 2004; Sader et al., 
1989) while others found that it is significantly correlated 
with AGB (Gonzalez-Alonso et al., 2006; Zheng et al., 
2007). These conflicting results occur due to saturation of 
the NDVI value at high biomass levels (Mutanga and 
Skidmore, 2004; Okuda et al., 2004) also poor 
atmospheric condition (Huete at al., 1994; Xiao et al., 
2003).  

In this study, we evaluated the result from this 
medium resolution multispectral Landsat 8 OLI in its 
ability to estimate forest AGB using different set of 
spectral analysis: spectral bands, spectral vegetation 
indices, spectral band with spectral vegetation indices. The 
objective of this study was to estimate above ground 
biomass in hill dipterocarp forest, Kelantan, Malaysia. 
 
2. MATERIALS AND METHOD 
 
2.1 Study sites 

This study was executed in three different 
permanent reserved forests in Kelantan, Malaysia namely 
Bukit Bakar Recreational Forest (BB), Gunung Basor 
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Forest Reserve (GB) and Gunung Stong Forest Reserve 
(GS). Generally, the vegetation type of these three PRFs 
was mainly hill dipterocarp forest at elevation between 
300 to 750 m a.s.l. 
 
2.2 Data collection 

A total number of 30 random sample plots were 
established from Bukit Bakar Recreational Forest (BB), 
Gunung Basor Forest Reserve (GB) and Gunung Stong 
Forest Reserve (GS). Global Positioning System (GPS) 
was used to record the coordinates of plots. These plots 
were used to develop new allometric equation. Diameter at 
breast height (DBH) of trees were measured above the 
buttresses of tree (Basuki, 2012; Chave et al., 2014). Trees 
with DBH at least 10 cm in each plot were considered as 
sample. (Basuki, 2012; Heng and Tsai, 1999; Samalca, 
2007). Physical characteristics were recorded and 
specimens collected for identification. 

Above ground biomass (AGB) for each trees was 
carried out by adopting the allometric equation developed 
by Kato et al (1978). This equation used DBH as 
independent variable. The equation to estimate AGB was: 
  
Y=0.2544*(DBH) 2.3648 
 
where; 
Y = AGB 
DBH = Diameter Breast Height 
 
2.3 Satellite data  

The study area is lies in 2 Landsat tile, first tile 
path: 127, row: 56 and another tile path: 127, row: 57. 
Landsat Data Continuity Mission (LDCM)’s Landsat 8 
OLI satellite images covering the region of interest which 
is Bukit Bakar Recreational Forest (BB), Gunung Basor 
Forest Reserve (GB) and Gunung Stong Forest Reserve 
(GS) were acquired on 2 April and 5 May, 2014. The 
images were acquired during a sunny and clear sky day 
conditions with less than 10% cloud cover and were 
downloaded from the USGS Earth Resources Observation 
and Science (EROS) Center archive 
(http://earthexplorer.usgs.gov/). The Landsat 8 OLI sensor 
was launched on the 11th of February 2013 with 16-day 
temporal resolution. On board the Landsat 8 OLI sensor, 
there are two pushbroom instruments: (i) the Operational 
Land Imager (OLI) comprising of nine spectral bands, see 
Table-1, and (ii) the Thermal Infrared Sensor (TIRS) 
which contains thermal bands 10 and 11 at a 100 m spatial 
resolution. 
 
2.4 Image processing  

A number of processing and pre-processing 
applied on the images. Atmospheric and haze correction 
were done in image pre-processing part. The data then 
been resample from 30m to 15m ground distance sampling 
(GDS) using Gram-Schmidt algorithm via pan sharpening 
tool in ENVI 5.1 processing package. Landsat 8 OLI was 
obtained in digital number (DN), thus it is essential to 
convert the DN values into reflectance values. Conversion 
from DN to reflectance was executed following the 

approach described on the USGS website 
(http://landsat.usgs.gov). These images were geo-rectified 
to UTM WGS 84, Zone 47.  
 
2.5 Spectral indices 

Numerous researchers have included spectral 
indices such as NDVI, Simple Ratio, Soil Adjusted 
Vegetation Index, Enhance Vegetation Index, Modified 
Soil Adjusted Vegetation Index and Adjusted Vegetation 
Index into their research to calculate AGB (Nssoko, 2007; 
Wijaya et al., 2010). In this study, we used reflectance 
band 1 to 7 and moisture vegetation indices (MVI) based 
on combination of reflectance band 5 and 6 (MVI6) and 
combination of band 5 and 7 (MVI7). These input 
parameter were chosen to estimate AGB because they had 
a better performance for biophysical valuation in other 
tropical forest (Freitas et. al., 2005; Lu et. al., 2004; 
Steininger, 2000; Tangki and Chappel, 2008). The 
formulas for moisture vegetation indices of MVI 6 and 
MVI7 as follows: 
 
MVI6 = (NIR – MIR6) / (NIR + MIR6) 
MVI7 = (NIR – MIR7) / (NIR + MIR7) 
 
Where 
  
MVI6 = Moisture Vegetation Index for band 5 and 6 
MVI7 = Moisture Vegetation Index for band 5 and 7 
NIR = Near Infrared reflectance (band 5) of Landsat 8 

OLI 
MIR6 = Middle Infrared reflectance band 6 of Landsat 8 

OLI 
MIR7 = Middle Infrared reflectance band 7 of Landsat 8 

OLI 
 

Table-1. OLI spatial characteristics. Source: 
http://landsat.usgs.gov. 

 

OLI spectral bands 

Band Bandwidth (µm) 
Ground distance 

sampling (m) 

1 0.433 – 0.453 30 

2 0.450 – 0.515 30 

3 0.525 – 0.600 30 

4 0.630 – 0.680 30 

5 0.845 – 0.885 30 

6 1.560 – 1.660 30 

7 2.100 – 2.300 30 

8 0.500 – 0.680 15 

9 1.360 – 1.390 30 

 
2.6 Data analysis 

Regression models of biomass were developed 
using field surveys variable (AGB) and independent 
variables namely spectral band 1(coastal aerosol), band 
2(blue), band 3(green), band 4(red), band 5(NIR), band 
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6(SWIR1), band 7(SWIR2) and vegetation indexes (MV16 
and MV17) that derived from Landsat 8. Before develop 
model, Pearson correlation coefficient was used to 
determine the strength and direction of relationship 
between AGB data with spectral bands and vegetation 
indexes. Then, regression analyses were conducted to 
develop several regression equations between AGB with 
stronger correlation variables. Prior establishing the 
analyses, data exploration was carried out to get models 
that best fit the data. Scatter plots were used to determine 
whether linearity exist (Basuki, 2012) between AGB with 
independent variables. Since only some of the assumptions 
of regression met, we transformed the data for linear 
regression (Addo-Fordjour and Rahmad, 2013; Chave et 
al., 2014; Samalca, 2007) using natural logarithm. Natural 
logarithm of the dependent variable (AGB) and 
independent variables were found to be the best 
transformations which produced models that did not 
violate regression assumptions. 

Selection of models for estimating the AGB were 
based on coefficient of determination (R2) (Basuki, 2012; 
Lu et al., 2012; Singh, Malhi, and Bhagwat, 2014) and 
significant value (p-value) of F-statistics. (Gasparri, 
Parmuchi, Bono, Karszenbaum, and Montenegro, 2010).  
 
 
 
 
 

3. RESULTS AND DISCUSSIONS 
For a better interpretation of remote sensing data 

in the study area, Table-2 summarizes descriptive statistics 
of the AGB of the 30 sampling plots. The average of AGB 
in field sampling is 1498.19 ton/ha. Table-3 shows the 
correlation coefficients (r) between spectral bands, 
vegetation indexes with AGB. It can be seen that band 
5(NIR) has strongest correlation with the AGB (r=0.721, 
p<0.001) followed by band 6(SWIR1), 1 (coastal aerosol) 
and band 2(blue). For the vegetation indexes, there are no 
significant relationships with AGB. These two 
independent variables were not used to generate model. 
Therefore, four bands (1, 2, 5 and 6) were used to generate 
regression models to predict the AGB.  Gasparri et al., 
(2010) in their study found stronger correlations for bands 
2, 3, 5, 7, NDVI and NDMI with AGB in subtropical dry 
forest of Argentina. The different forest type could be the 
reasons for the different results of correlation analysis. 
 

Table-2. Descriptive statistics of AGB. 
 

Descriptive statistics 
Above ground biomass 

(ton/ha) 

Minimum 503.33 

Mean 1498.19 

Maximum 3700.87 

Std. Deviation 721.81 

 
Table-3. Correlation analysis. 

 

Landsat 8 Vegetation 

Band 
Pearson 

correlation 
p-value Band 

Pearson 
correlation 

p-value 

1 -.521 .000 MV16 -.019 .915 

2 -.528 .000 MV17 .122 .484 

3 -.323 .000    

4 -.480 .000    

5 .721 .000    

6 .599 .000    

7 .462 .042    

 
Table-4 reveals statistical analysis of the 

regression models. A total of 6 models were generated to 
estimate above ground biomass. Model 1, 2 and 4 
produced overall 0.30 coefficient of determination. While 
model 3 and 6 (combination band 1, 2, 5 and 6) provide 
0.51 and 0.49 respectively. The best model was a single 
band model using band 5 (Model 3). Band 5(NIR) 
explained 51% of variance in AGB. This coefficient of 
determination is lower than that obtained by Basuki (2012) 
and (Zheng et al., 2004) with 63% and 82% respectively. 

The p-value indicates that band 5(NIR) is significantly 
related to AGB. NIR band is known to be a better 
indicator of above ground biomass. NIR has high 
sensitivity in detecting healthy plants. The water in their 
leaves scatters the wavelengths back into the sky. This 
study does agree with previously research by Asner (1998) 
in savannas and woodlands in Mexico and Brazil. But this 
departure with Gasparri et al., (2010), they found the 
effect of bare soil in the sparse dry forest may have 
reduced the accuracy to estimate AGB. 
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Table-4. Regression models between spectral bands (spectral reflectance of Landsat 8 OLI) 
and the AGB using 39 plots. 

 

Model 
Independent 

variable 
Equation R2 p-value 

1 Band 1 
Ln(AGB)= -5.163 -
5.190*Ln(Band 1) 

0.252 0.000 

2 Band 2 
ln(AGB)= -4.174-
4.338*Ln(Band 2) 

0.278 0.000 

3 Band 5 
ln(AGB)= 14.451 -
5.149*ln(Band 5) 

0.507 0.000 

4 Band 6 
ln(AGB)= 14.087 -
3.014*ln(Band 6) 

0.341 0.000 

6 Band 1,2,5,6 

ln(AGB)= 8.493 -
15.788*ln(Band 1) + 12.250* 
ln(Band 2) +5.390*ln(Band 5) 

– 0.357* ln(Band 6) 

0.490 0.000 

 
4. CONCLUSIONS 

The result shows that Model 3 is the best model 
with the highest coefficient of determination. The 
proposed model reveals Band 5(NIR) increased the 
estimation accuracy of AGB in Hill Dipterocarp forest, 
Kelantan. Due to NIR has high sensitivity in detecting 
healthy plants, we can conclude that the forest in Kelantan 
is highly contributes to biomass and carbon stock that 
important for ecology. 
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