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ABSTRACT

Because of the significantly larger drainage area over the vertical wells, it is recognized that horizontal wells
produce more than twice the flow rate of a vertical well under the same drawdown pressure which also reduces the
occurrence of coning. Then, horizontal well drilling has increased around the well; therefore, it is so important to describe
and predict well pressure behavior and develop tools for well test data interpretation. Although, there is already a
methodology for pressure transient analysis for the mentioned well configuration, known as TDS technique, this does not
included neither hemilinear flow, parabolic flow nor open flow boundaries. Besides, most of the equations for gas well
have not been introduced in the literature. This paper deals with this situation and presents a detailed synthetic
interpretation example of the complemented interpretation technique.

Keywords: horizontal well, anisotropy, TDS Technique, hemilinear flow, parabolic flow, open and closed boundaries, pressure transient

analysis.

1. INTRODUCTION

In the field of well test analysis for horizontal
wells several researches have been conducted and several
mathematical models have been presented. The earliest
investigations on this topic were presented by Daviau et
al. (1985), Clonts and Ramey (1986) and Goode and
Thambynayagam (1987). They presented mathematical
model to study horizontal well pressure behavior and
identified several flow regimes encountered during a
pressure test run on these wells. They also applied the
straight-line conventional analysis as the interpretation
technique.

The works conducted by Engler and Tiab (1996a,
1996b) were based on the mathematical models describen
well pressure behavior presented by Goode and
Thambynayagam (1987) for semi-infinite homogeneous
anisotropic and heterogeneous anisotropic oil formations.
Engler and Tiab (1996a, 1996b) introduced the TDS
Technique, Tiab (1993a, 1993b), for the interpretation of
pressure tests in horizontal wells in homogeneous and
naturally fractured reservoirs. These, of course, use
characteristic points found on the pressure and pressure
derivative curves. They developed expressions for
obtaining information from the following flow regimes:
early radial flow, pseudorradial flow, late linear flow.
Moreover, they included the intersection point found
between different flow regimes, such as, early radial and
pseudorradial pressure derivative, early linear and late
linear pressure derivative.

Isaaka et al. (2000) found between the early
linear and pseudorradial flow regimes the presence of the
elliptical flow regime in horizontal well. It was recognized
by a slope of 0.35 in the pressure derivative. Later on,
Chacon, Djebrouni and Tiab (2004) introduced a pressure
derivative model for such flow regime. The pressure
derivative slope was of 0.36. This model was later used by
Escobar et al. (2004) and Escobar and Montealegre (2007)

to develop pressure test interpretation by TDS Technique
and conventional analysis, respectively. However,
Martinez, Escobar and Bonilla (2012) reformulated a new
governing equation for the elliptical flow and provided a
corrected version of the TDS Technique and conventional
analysis for this flow regime.

Later extensions of the TDS Technique have
been presented by Escobar, Bernal and Olaya-Marin
(2014) who developed a practical well test interpretation
methodology using characteristic points for fractured
horizontal wells in unconventional shale reservoirs using
dual-porosity models in the stimulated reservoir volume,
and, in the same year Bernal, Escobar and Ghisays (2014)
established equations for permeability, half-fracture
length, skin factor and reservoir length without
considering the model for hydraulically-fractured shale
formations using the concept of induced permeability
field. Escobar, Zhao and Zhang (2014) presented a TDS
methodology for interpretation of pressure tests in
horizontal wells included the effect of the threshold
pressure gradient.

The purpose of this work is to extend TDS
Technique for Hemilinear flow, parabolic Flow, open and
close boundaries flows for horizontal wells as performed
by Escobar, Hernandez and Hernandez (2007) who found
the characteristic maximum points and governing
equations for vertical wells in long homogeneous
reservoirs using TDS technique.

2. MATHEMATICAL FORMULATION

2.1. Mathematical model

Goode and Thambynayagam (1987) presented the
mathematical solution for horizontal well pressure
reservoir pressure behavior in both homogeneous and
heterogeneous reservoirs. Its homogeneous model was
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used by Engler and Tiab (1996a, 1996b). This work also ky L,

adopts this mathematical solution. tp * PD '= —[t *AP '] ()
Engler and Tiab (1996b) proposed the following 141.2quB
definitions of the dimensionless quantities:
0.0002637kyt
k L, AP e — 3
p =Y 1 gucr,
141.2quB
r? 0.0002637kyt
toy=t, +=——"—> 4
A guc A
h ] ———— h, —————— B
h, h,
) ﬁ be ) ﬁ be

Well

© D)

Figure-1. Reservoir geometry cases for off-centered horizontal wells in the reservoir. (A) Well located near the open
boundary and the other boundary is closed. (B) Well is located within two open boundaries. (C) Well located near the
closed boundary and the other boundary is open. (D) All closed boundaries. After Cortes and Pabon (2016).
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Figure-2. Reservoir geometry cases for centered horizontal wells in the reservoir (A) The reservoir has
both open boundaries. (B) The reservoir has one open boundary. (C) The reservoir has all
closed boundaries. After Cortes and Pabon (2016).

Y, =2 (5)

2.2. TDS Technique

Engler and Tiab (1996) formulated the following
equations to find various characteristic parameters and
skin for each flow regime:
For Early radial flow:

ok, <[ T0.0auB ©
LW (t * AP ')erl

k,k,t
S LY P N A L [+7.43 @
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For early linear flow:
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For pseudorradial flow:
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For late linear flow:
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For the elliptical flow regime, Martinez et al.
(2012) presented the following relationships:

Jom

q,uO'MB t 036 /0.
3 It
LW_ 5.5962 KkOSKk014h [t*AP'] (ﬁj (16)
y X z Ell t
verg 036 /05
k, =|5.5962———J4 L an
y L2k h, [t* AP, L ¢
N A5 77778
25.231296 | [t*AP']
] Ell (18)
0.281, 0. 0.36
Lw ky5[ tEII J
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Figure-3. Dimensionless (rw/hy)? tp versus (hy/Ly) to*Pp’
log-log plot with unified late-linear and hemilinear flow
regimes. After Cortes and Pabon (2016).

For wvertical wells, Escobar et al. (2007)
differentiated between linear flow (dual linear flow) when
there exist two linear flows at both sides of the well and
single linear (hemilinear flow) in which a linear flow takes
place at only one lateral side of the well. This definition is
used by Cortes and Pabon (2016). Hemilinear flow occurs
within the reservoir when the horizontal well is located near
the closed boundary; regardless the far boundary is closed
(late pseudosteady- state period) or open (steady state).
Reservoir geometries of this flow regime are shown in
Figure-1 (C) and (D). The governing equation of the pressure
derivative for hemilinear flow regime was empirically
obtained from Figure-3 by Cortes and Pabon (2016). Then,
the governing pressure equation was obtained by integration:

b, 4LWr ‘/ T, \/7(5 +8,+S, +S,) (19)

The dimensionless governing pressure derivative is:

0.5

R
2 L
(to * Py )y =% [;—j to, (20)

z X

Replacing the dimensionless quantities given by
Equations (2) and (3) into Equation (20), it yields:

2
k, = 66.067| £ qB @1
dc. )| mhtAPT,

0.5

qB Ht,
P, [E* 8P | K,

h, =8.1282 (22)

Dividing Equation (19) by Equation (20) and,
then, substituting Equations (1), (2) and (3) into the
resulting expression, it yields:

(s, +sS,+8S,+S,)=

{ APy 2}
[t*AP1,

Parabolic flow appears within the reservoir when
the horizontal well is located near the open boundary
regardless the far boundary is either close or open to flow.
Reservoir geometries of this flow regime are shown in
Figure-1 (A) and (B). It determined dimensionless governing

equations of Parabolic flow.
The dimensionless governing pressure is:

1 {L kth,}
17.3716| h h c
N\ duc, 23)

0.62),2.3

P, =-11.1326

—0.5
hoezhms 125 (t DPB)

"u 24

k
+ fk—y(sX +S,+5S, +Spg)
z

The dimensionless governing pressure derivative is:

0 62142.3

(t, * P, ")pg = 5.5663 (25)

y -0.5
h062h105 125(Dp3)
w

Replacing the dimensionless parameters given by
Equations (2) and (3) into Equation (25), it yields:

1
1.57 0.3814,0.621,1.05,.0.25 AJ
Tl K e

48403.5189 B
L qu 6

' 3 ' tPB "
(t AP )PB (¢_Ctj
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Dividing Equation (24) by Equation (25) and,
then, substituting Equation (1), (2) and (3) into the result,
we obtain:

06223
342.777 e

0.621,1.05 . 0.25
k,hohEorS

[kz¢/uct JO*S @7

tPB

(S, +5S,+5S, +Spg) =

AP¢+ 2
[t * AP ’]PB
For the first case of steady state, the reservoir

geometry is shown in Figure-1 (B). The dimensionless
governing pressure derivative equation is:

0.17 b
(tD * PD v)ssl =361699.2 ::&5 h_y tB}%sl
z y

(28)

Replacing the dimensionless quantities given by
Equations (2) and (3) into Equation (28), it yields:

21 0.83 X
PR B S Y
936 4 011 2 0.17 ssl
1.93674x10" 42 L

3
( tssl J &
aBgc, )| b,
The second case of steady state, the reservoir

geometry is shown in Figure-1 (A). The dimensionless
governing pressure derivative expression is:

| L&”b;m L
(t, * P, )552 = 322427.2182—'[%52 G0)

0.721,2.95
z y

29

Replacing the dimensionless parameters given by
Equations (2) and (3) into Equation (30), it yields:

21 0.83 110.721,2.95
_ 1 ky L™ h2hy
1.726458976x10" x> b)”

t
t*AP' S52
[ ]ssz(qB¢Ctj

The third case of steady state is sketched by the
reservoir geometry of Figure-1 (C). The dimensionless
governing pressure derivative equation is:

€2))

1 15 Lsfs
. _ -1
(tD * PD )ss3 - 242 .94 ( hEx h;).75 th&ss (32)

Replacing Equations (2) and (3) into Equation (32),
it yields:

U e, (g "
PR 7S

1
Y {2204.07

The fourth case of steady state behavior is
represented by the reservoir geometry shown in Figure-2
(B). The dimensionless governing pressure derivative

equation is:
S h, L to, ) 34
ss4 468.124 h0’8h0‘75 ( DA)ss4 (34)

(t,* Py )

Replacing the dimensionless parameters given by
Equations (2) and (3) into Equation (34), it yields:

0.4
kjL(\k]ShZOJS [t*AP ]554( tss4 J:| (35)

hy = 1 02 2
1143.836 h®2 qBdc,

For the fifth case of steady state behavior, the
reservoir geometry is shown in Figure-2 (A) and the
dimensionless equation of the governing pressure derivative

is given by:
1 h1.5 L&/gs i
4085.7986 ( hg.shms (tDA)sSIS (36)

(tD * PD ’)555 =

Replacing the dimensionless quantities given by
Equations (2) and (3) into Equation (36), it yields:

UL (1 )] )
o qBgc,

h, =| —
131.053

For the pseudosteady-state period, the reservoir
geometry is shown in Figure-1 (D) and Figure-2 (C). The
dimensionless governing pressure derivative equation is:

h,

z

(tD * IDD ')pss = Zﬂ-[ L ](tDA)pSS (38)

Replacing Equations (2) and (3) into Equation (38),
it yields:

A= 1 thpss
42744 hge [t*AP']

(39)

pss
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2.2.1. Intersection points between flow regimes

Engler and Tiab (1996b) presented the following
two equations, for the intersections (early radial-early
linear) and (early radial-late linear),

2

k, =301.7727duc, (40)

er—eli

k, =301. 7727( J 28 @1

er—Ili
Cortes and Pabon (2016) intercepted several
pressure derivative equations to obtain useful intersection
point expression. For instance, the time for intersection

between early radial flow and elliptical flow regimes,
formerly given by Martinez et al. (2012) is given by:

0.14
1 k, h [k
t 036 _ Ny , Ky (42)
(oa) ™ =1 53080388 Vk, 7L (ky]

This becomes in real units;

0.14 03617
K =| 12,6156 [Wcj 43)

0.28
er—Elli

The intersection time between early radial and
hemilinear flow regime is given by:

( ) :l\/k_TLK&] (44)
Pt 2k, VL,

After replacing the dimensionless parameters in
the above expression, it yields:

k, =75. 4432[ ] V“C J (5)
Lw 1:er—hli

The obtained expression for the intersection time
between early radial and parabolic flow regime is:

L(\)N62b23 kz
(o, ., )7 =11. 1326W k_y (46)

in real units, this becomes:

X . . 0.5 %.3
b — 1 hZ0 . h)l/ . r-V\(I) . k kyter PBi (47)
¥ 6855538 L k, | guc,

The time of intersection between early radial and
first case of steady-state period is governed by:

L017 k
tor ., = 72339841555 hy & (48)

y
This becomes in real units;

1 h0'75k1.5 h ’ ter ssli (49)
2743262799 L°”k°5 B,

The dimensionless expression for the time of
intersection between early radial flow regime and second
case of steady-state period is:

0. l7b3 .07
_ 64485444 D (Ko (50)

DAy i 0.72 2 95 k
Z

t

After replacing the dimensionless parameters in
the above expression, it yields:

0.72142.95 1.5
1 hz hy ky ter—sszi

" 2445409329 %707 guuc k™

(51

The intersection time between early radial flow
and the third case of steady-state period is governed by:

1 h)l/S LS\;SS & (52)
12147 h2*h?7 J\k,

D&r—ss}i -

This becomes in real units;

. 15 0.4
h _ 1 hzo75 ky ter—ss3i (53)
Y 1312191 WP ) guck??

The time of intersection between early radial flow
regime and the fourth case of steady-state period leads to
obtain the following dimensionless expression:

1 h)l/.SLg\;BS ﬁ “
234.062 | hP°h* [k, oY

tDAar—ssM =

in real units, this becomes:
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0.4
h — 1 h?js killster—ss4i (55)
Y 116.2016| h*2L%% ) guc k®?

The intersection time between early radial flow
and fifth case of steady-state period is represented by:

1 h)l/S LS‘;SS k

= 56
2042.8993 hf'*‘hf'75 ky 56)

tDAErfsssi =

After replacing the dimensionless parameters in
the above expression, it yields:

0.4
h — 1 hzo'75 k;'ster—sssi (57)
Y71 1.8563( h2L%F | guc k®?

The intersecting time between early radial flow
and pseudosteady-state period provides:

1 [k, (h
t =— || = 58
( D&r—pssi ) 472. kz [ LW ] ( )

in real units, it becomes:

0.51,0.
1 I—W k Sk 5ter pssi
T 301.7727 h, duc,

(59)

The time of intersection between the first case of
steady-state period and early linear flow regime gives:

()5 =204066.921 2 | 2 | A (60)
Dei-ss1i - h025 h r3

This becomes in real units;

1.5
1 h025 h kytel ssli (61)
" 47654884040 L duc,

The time of intersection between the first case of
steady-state period and elliptical flow regime gives in both
dimensionless form is given by Equation (62) and after
replacing the dimensionless quantities allows finding
reservoir area:

h025A
2.72y 0.11
I’W

(th, ) =469771.5923 2

[&]0.14 (b_yJﬁi
ky hy
3 1.36
Iﬁ(j\;llk)ll‘s (tEIISSIiJ (63)

1 h,
- 34608037630(by j hy ke duc,

(62)

As in the former case, the intersection time
between the first case of steady state and pseudorradial
flow regime leads to:

3
0.25 b
tDHS“—7233984h X ﬁz K (64)
" L2 L h, )k,
3
— 1 LS\}83 & k)l/lstpr—ssli (65)
2743262799 h* | b, | guck!”

The time of intersection between the first case of
steady-state period and late linear flow regime gives:

025 *h 2
('[DIHS“) =204066.921 YN (h—XJ (66)
wow y

After replacing the dimensionless quantities and
solving for reservoir length:

05
02532 1.5
h, =| 47654884040 L ik | G ©7)
L\/Q kytll—ssli

The time of intersection between the first case of
steady-state period and parabolic flow regime provide
Equation (68) which allows obtaining reservoir area one
the dimensionless parameters are replaced there:

0.7

)*? =64980.18 ) (68)

0.137 0.451,1.95,.0.75
WO B LR %

(t

DPB—ss 1i

1 hS'B 045195 (| t . 0.5
= ol;w 0.25y Lo (69)
4001527.862  bYr, duc,

Other expressions useful to find reservoir area or
reservoir length use the time of intersection of the second
case of steady- state period with early linear flow regime -
Equation (70), elliptical flow regime -Equation (72), with
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pseudorradial flow regime, Equation (74) and with late
linear flow —Equation (76). Then;

h().28 ().17b3.07A

(t,, )" =181910.078- L;?gs t (70)

y w
_ 1 h;95 kytel ss2i : 71
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Also, reservoir area or reservoir length can be
found from the intersection of the second case of steady-
state period and parabolic flow regimes. Then:

077

(tDPB—ss .)05 =57924.8726 h01h19LW45 07

(78)

— 1 hflhlllgl‘w k 1:PB $S2i " (79)
3567056.779 b)'ry* | guc,

The time of intersection between the third case of
steady-state period with early linear flow gives Equation
(80), with elliptical flow gives Equation (82), with
pseudorradial equation (84), with late linear flow gives

Equation (86) and with hemilinear flow gives Equation
(88). Once the dimensionless time is replaced in these
resulting expressions, reservoir length is solved for:

1 h2.5 L?/\./SS h;).ZS h)((JZ
(t, )" = L (80)
430.5999 r

w

15 0.4
h _ 1 1 I(ytel $S3i (81)
Y1 542.3265( h*2L2h0E L g,

0.14
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187.0509( k,

hZO.25 h;S I—f,)\}57 A
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w

(82)

L5 136714
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. z X thx
1 hOA25h2A5h1A2
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w

1 195 V(Kb )|
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Reservoir length is also found from the time of
intersection formed by the fourth case of steady-state
period with early linear flow -Equation (90) - with
elliptical flow -Equation (92) - with pseudorradial flow -
Equation (94) — and with late linear flow -Equation (96).

(chI—SSSi )]'5
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Reservoir length is also found from the
intersection time points of the fifth case of steady-state
period with early linear flow -Equation (98)- with
elliptical flow -Equation (100)- with pseudorradial flow -
Equation (102)- and with late linear flow (104):
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The late pseudosteady-state period also intersects
with such other flow regimes as early linear -Equation
(106)- elliptical -Equation (108)- pseudorradial -Equation
(110)- late linear -Equation (112)- hemilinear -Equation
(114). All of these intercepts allow finding reservoir area:

A
(D)el pssn_2\/*rLW

kt, )
— I—W y -el—pssi (107)
173716 duc,

0.64 1 A ky o
(tDEII—pssi) = W T (108)

(106)

8.1605 L°7r!* | k

w X

0.64

t )

_ 1 L(\),\‘lnkf‘MkS‘S Ell-pssi (109)
23.9206 uc,

k
t, LA (110)
o 4z \k,
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\/mt pr—pssi

A=
301.7727duc,

(tD”_pSS,)Oj:( A jx/; (112)

(111)

2zhr,
0.5
A:( h, j Kyt (113)
173716 | guc,
A
(o, )" TS (114)
k t 0.5
A=34.7432h [%] (115)
LG

Based upon the works of Engler and Tiab
(1996b) and Martinez et al. (2012), Pabon and Cortes
(2016) also developed all the equations for the
interpretation of pressure tests in horizontal gas wells
using the TDS Technique. These equations are reported in
Appendix A.

3. SYNTHETIC EXAMPLE

The simulated test reported in Figure-4 was run
for a homogeneous, isotropic, oil reservoir which
geometry is shown in Figure-1 (A), with the information
given below;

B =1.2 bbl/STB g= 600 STB/D

h, =150 ft u=12cp

Lw =500 ft Ct= 1x107 psi’!

C =0 STB/psi ¢=15%

k=30 md rw=20.4

hy = 12000 ft hy = 320000 ft

by =20000 ft A = 3840000000 ft

Estimate permeability (K), horizontal well length
(Lw), eccentricity well within the reservoir in y-axis (by),
Reservoir width (hx), reservoir length (hy), Reservoir area
(A) product using the TDS Technique.

Solution
The Characteristic points were read from Figure-

4. They are reported in Tables 1 and -2.

Table-1. Characteristic points from Figure-4.

tr | 50.6 | (AP)r | 111.6 | (t*AP”)y | 13.5
ty 1009 | (AP) | 160.7 | (t*AP*); | 26.8
tes | 127128 | (AP)ps | 348.8 | (t*AP’)ps | 20.7
two | 2014849 | (AP)s2 | 386.9 | (t*AP")s | 8.4

Table-2. Intersection points from Figure-4.

Time intersection (hr)

ter-ss2i 4200000
tpr-ss2i 1133032.871
tll-ss2i 71489.541
tPB-ss2i 4510685.103

i . Pressure
Time (hr) Pressure (psi) derivative (psi)
ter 0.02 (AP)er 382 (t*AP)er | 3.84
ten 0.254 (AP)en 50.1 (t*AP)e 6.8

Use of Equations (6), (17), (11) and (14) allow
finding and verifying reservoir permeability:

_ 70.6(600)(1.2)(1.2)

K.k, =32.1md
(500)(3.8)
| 55060 (0001.2"(1.2) 0254 |
LT (5000 (30) (150)(6.8)| (0.15)(10°)
k, =30.14 ft

Jok, = 70.6(600)(12)1.2) _ 30 15
(150)(13.5)

1508
[t =71489.5411
AP, =3869psi N ”
gt
oEwrs il
AR, =160.7 psi e /
T = P =
1602 2B, —1IL6ps— e /41,M:1133m2.371m\
aA

‘®
o ] n
_D-— AR, =50.1psi rEC ‘.:n - N
* L. Ly

< - (t*2P'), =268 psi] L9
o 13.5si - H
< 1E01

6.8psi

i

(t*AP), =384 psi

1E®@  1E01  1EMD  1E01  1EKR  1EMB  1E04  1E06  1E06  1ENT7
t hr

Figure-4. Pressure and pressure derivative versus time
log-log plot for the synthetic example.

(1.2)(1009)

= — =297 md
(12000)*(0.15)(10°°)

o _[4064(600)(1.2) ’
YL (150)(26.8)

Determine horizontal well length with Equation
(16):
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(600)(1.2)°%(1.2) ( 0254 Y\ Yor

L, =501.7ft

Equation (13) is use to find the reservoir width

(h:

X

b 4.064(600)(1.2) [ (1.2)1009) o000
(150)(26.8) \(30)(0.15)(10 )

Equation (77) is use to find the reservoir length

(hy):

!

hy

{42480690310(150)"-28(2(1)00)”” (120007 ((0. 15)(1.2)(10*“))"5 r’”

(500)"°
= 324067.699 ft

(30)(71489.541)

Equation (26) is use to find the (by) :

by
by

_ |: (30)1.5 (5(1))0'38 a 50)0.62 (32(XXX))I 05 (©: 4)0.15 207)1271 28)0'5 :I/B

48403.5189(600)(1.2)*(1.2)(0.15)* (10"
=19961 ft

Use of Equations (31), (51) and (75) allow

finding and verifying reservoir area:

~(30)(500)" (150)*™(320000)*” (8.4)(2014849)
 1.726458976x10'" (1.2)3(20000)*” (600)(1.2)(0.15)10°°)

A=3951690732 f*

1 (150232000002 (30)"(4200000)
" 2445409329 (500)”7(20000*” (0.15)(1.2)(10 *)30)°°

A=3987839130ft’

B 1 (320000)*%(500)®  (30)"*(1133032.871)
2445409315 (20000)*”(150)** (0.15)(1.2)(107°)(30)*

A =3585994320 ft*

4.

a)

CONCLUSIONS

TDS technique was extended to characterize
rectangular homogeneous anisotropic reservoirs for
horizontal oil and gas wells. New reliable equations
were developed to calculate such well and reservoir
parameter as permeability in X-, y- and z- directions,
horizontal wellbore length, skin factor, reservoir area,
etc. When the wellbore is off-centered along the
reservoir length some new flow regimes can show up,

such as: hemilinear flow, parabolic flow, five cases of
steady state and pseudosteady state. The expressions
for such flow regimes were developed to allow
solving for reservoir parameters which were
successfully tested with simulated examples
(although, only one is presented for space-saving
reasons) providing acceptable results compared to the
input-simulated values.

b) New expressions are introduced to estimate and verify
reservoir area, reservoir length, among others, using
time intersection points.
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Nomenclature

A Reservoir area, ft?
B Volume factor, rb/STB
b Eccentricity well within the reservoir in y-
Y axis, ft
C Wellbore Storage
Ct Total system compressibility, psi’!
hy Reservoir width, ft
hy Reservoir length, ft
h, Reservoir thickness, ft
k Reservoir horizontal permeability, md
Ly Horizontal well length, ft
P Pressure, psi
P; Initial reservoir pressure, psi
q Flow rate, BPD
Ty Wellbore radius , ft
s Skin factor
Sm Mechanical skin factor
SEll Elliptical pseudoskin factor
Shi Hemilinear pseudoskin factor
SPB Parabolic pseudoskin factor
Sx x-direction pseudoskin factor
Sz z-direction pseudoskin factor
T Reservoir temperature, °R
t Time, hr
ta(P) Pseudotime function, (hr)(psi)/cp
tp Dimensionless time coordinate
tpa(P) Dimensionless pseudotime function
tp*Pp’ Dimensionless pressure derivative
(t*AP’) | Pressure derivative, psi
t*Am(P)" | Pseudopressure derivative function, psi2/cp
tp*m(P)p | Dimensionless pseudopressure derivative
’ function
Greeks
A | Change, drop
¢ | Porosity, fraction
p | Viscosity, cp
Suffices

10166



VOL. 11, NO. 17, SEPTEMBER 2016

ISSN 1819-6608

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

ARPN Journal of Engineering and Applied Sciences ﬁ :B

www.arpnjournals.com

D Dimensionless linear flow
el Early linear flow period .| Intercept of second case of steady state and
11-ss2i .
cl-pssi Intercept of pseudosteady-state and early late linear flow
}uiear ﬂ(t)wff t TRy, ll-ss3i Eltt:rl(izsgé roffl (;[\I;lrd case of steady state and
elss1j | Intercept of first case of steady state an
early linear flow lossdi Intercept of fourth case of steady state and
eloss2i Interct?pt of second case of steady state and late linear flow
early linear flow lossSi Intercept of fifth case of steady state and late
eoss3i Interce?pt of third case of steady state and linear ﬂpw .
early linear flow PB Parabolic flow period
.| Intercept of fourth case of steady state and . | Intercept of first case of steady state and
cl-ssdi early linear flow PB-ssli parabolic flow
. | Intercept of fifth case of steady state and . | Intercept of second case of steady state and
cl-ss3i early linear flow PB-ss2i parabolic flow
Ell Elliptical flow period pr Pseudorradial flow period
Ell-pssi glgifcept of pseudosteady-state and elliptical pr-pssi Lrggeligz}r)rta(ét; Eﬁs;l(l)&issteady—state and
. | Intercept of first case of steady state and . | Intercept of first case of steady state and
Ell-ssli elliptical flow pr-ssli pseudorradial flow
. | Intercept of second case of steady state and . | Intercept of second case of steady state and
Ell-ss2i elliptical flow pr-ss2i pseudorradial flow
. | Intercept of third case of steady state and . | Intercept of third case of steady state and
Ell-ss3i elliptical flow pr-ss3i pseudorradial flow
. | Intercept of fourth case of steady state and . | Intercept of fourth case of steady state and
Ell-ss4i elliptical flow pr-ss4i pseudorradial flow
. | Intercept of fifth case of steady state and . | Intercept of fifth case of steady state and
Ell-ss3i elliptical flow pr-ss3i pseudorradial flow
er Early radial flow period s Intercept of pseudosteady-state and
er-eli | Intercept of early radial and early linear flow prp pseudorradial flow
er-Elli | Intercept of early radial and elliptical flow pss Pseudosteady state
er-hli | Intercept of early radial and hemilinear flow ss Steady state
er-1li | Intercept of early radial and late linear flow ssl First case of steady state
er-PBi | Intercept of early radial and parabolic flow ss2 Second case of steady state
L Intercept of early radial and pseudorradial ss3 Third case of steady state
erp flow ss4 Fourth case of steady state
er-pssi Intercept of early radial and pseudosteady- ss5 Fifth case of steady state
P state t Total
. | Intercept of early radial and first case of W Well
er-ssli —
steady state X x-direction index
. | Intercept of early radial and second case of y y-direction index
er-ss2i —
steady state z z-direction index
. | Intercept of early radial and third case of
er-ss3i
steady state REFERENCES
er-ssdi Intercept of early radial and fourth case of
steady state Agarwal R. G. 1979, January 1. Real Gas Pseudo-Time -
er-ssSi Intercept of early radial and fifth case of A New Function for Pressure Buildup Analysis of MHF
steady state Gas Wells. Society of Petroleum Engineers.
g Gas doi:10.2118/8279-MS.
hl Hemilinear flow period
hl-pssi Intercept of pseudosteady-state and Al-Hussainy R., Ramey H.J. and Crawford P.B. 1966. The
PSS femilinear flow flow of real gases through porous media. Journal of
hl-sg3i | Intercept of third case of steady state and Petroleum Technology. May. pp. 624-636, Trans. AIME,
21| Yemilinear flow 237. Society of Petroleum Engineers. doi:10.2118/1243-
i Intersection A-PA.
11 Late linear flow period ) .
.| Intercept of pseudosteady-state and late Bernal K.M., Escobar F.H. and Ghlsgys-Rulz A.G: 2014.
1l-pssi linear flow Pressure and Pressure Derivative Analysis for
1l-ssli | Intercept of first case of steady state and late Hydraulically-Fractured ~ Shale Formations Using the
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Appendix A. Gas reservoir equations
Dimensionless pressure derivative:

1 |k

[ty *m(P)p T, ==, |-
2Vk, (A.1)

.
[t *m(P)p ]y = h_v:«/”tDae. (A2)
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r.0.72 L?/\./ZS
to *M(P)o ey =0.76994694 22—

0.14

[ty *m(P)p 1, = h

(A3)

(A.4)

[t, *m(P), ", = (%) /ntDa" (A.5)

[t * m(P)D ']hl =h_h_w ﬂtDam (A.6)
z X
0.62b243
[t *M(P)p Tpg = 5.5663W(t% )05 (A7)
z y

w

v I‘i.l\;17 by ’
[ty *m(P)p 'l =361699.2 h— Dapgl (A.8)

0.75
z y
. ' La/17b3 .07
o * (P s, =322427.2182 e 295 L (A9)
15 085
[tD * m(P)D ']553 4294 [ ho 8h°75 J (A.10)

1 h* L3S
[ts *M(P)p Tes = 65 124( E) hz° J aA)554(A.11)

h15 0.85
[tD * m(P)D '] J(tDaA)SSIS (A 12)

=5~ 4085.7986 ( hO*h07

L
[to *M(P)p Tpss = zz(h—W](tDaA)pss (A.13)
TDS tecnique:
711.26qT
\ kk, = ] (A.14)
L[t*Am(P),,

k =|40.94 qT (4P, (A.15)
’ T L[t Am(P) T, ¢

0.36 %_72
LN={56.3792 N— L [ta(P)Euj (A.16)
ky "k hy [t Am(P) Tg, ¢
kk, =711.26 qr (A.17)
h,[t*Am(P)],..
h = 40.94 t (P)" (A.18)
t*Am(P)']“

h, =81.88 t (P)“' (A.19)
t*Am(P)

1
1.57 0.38},0.62},1.05 .0.25 A.}
1 S K T

b 487606.9931 qT (A.20)

NG
a PB t*A P 'PB
—¢ [t*Am(P)']

k2|_3v83h0 .75 t*Am(P) ]ssl t (P)ssl
1.9511731x10" y qT ¢

](A.Zl)

_ KL PRt Am(P) (ta(P)ssz

A22
1.739322x10" qTh;’ ¢ j( )

0.4

[ 1,21 0.1510.75 14 s !
KLY “h[t* Am(P) 1553(ta(P)553] (A23)

Y 22204.9206h* qT ¢

0.4

h = k)%L(\:V.lShZOjS [t*Am(P)']sszt t(P)SS4
y 11523.578h"? aT¢

(A.24)

0.4

(A.25)

KL [t Am(PY ] (t,(P)..s
y 1320.2959h" qT¢

A=2.35694[ta(P)PSSj aT
h,g )[t*Am(P)']

(A.26)

pss

A.1. Intersections
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h2
k, =301.7727¢ ———2—

a )er—eli

h k04 p 0367
k, =[12.6156 "% ( j (A.28)
L\N ta(l:))er—EIIi

2
k, =301.7727£hxhzj ¢

(A27)

(A.29)
LW ta(P)er—IIi
hh Y
k, =75.4432[ 2 ] ( ¢ J (A.30)
va ta(P)ier—hIi

s
b h;).szh)ll.osrv(v),zs & kyta(P)er—PBi 051723 s
Y| 685.5538L0 | K, )

1 ho75k!S (K 3t P)
A= TTTL03 {—y] ascesll - (A32)
2743262799 Ly, 7k?* | b, p
1 h;)472h2.95 kLSt P oot
A= 2445400329 O‘”bg"” y a(ko?s G
LW y ¢ z
0.75 1.5 0.4
h = 1 hz ky ta(P)er—SS3i (A.34)
Y| 31.2191 hPLGE A
0.75 1.5 0.4
h — 1 hZ ky ta(P)eI’—SS4i (A‘SS)
| 16.2016| h°L)" A
0.75 klASt P . 0.4
h = 1 thl T y a( O)SEr—ssﬂ (A.36)
1 1.8563| )7L, ok’
kOﬁkOASt P .
= 1 i y Z a( )er_p53| (A37)
3017727 h, &

3 .
PR B [h_} ( Kt (P s ]
0.17
47654884040 L, { b, ¢

(A.38)

3 ! ) 1.36
_ 1 ﬂ L&IIk;S L (Pen i (A.39)
34608037630( b, | W=k ¢

1 oss (h ) k!t (P)
I-W ( yj y a pr—ssli

= 2 A.40
2743262799 h}* | b, gk (A-40)
15703
~ h;)ZSb;; 2 ¢
h, =| 47654884040 (A41)
Lv(: kyta(P)Il—ssli
0.131 0.451,1.95 0.5
_ 1 hz OI;WO_ZY kyta(P)PB—ssli (A42)
4001527.862  b{’r p
R (Kt (P .
A= 1 y y a( )el—sszi A43
42480690310 h0217h37 ¢ (A4
z y

0.11}42.951,1.5 136
i 1 Lo 07K (1 (P)gycens (A.44)
30850422960 h*b;"k; ™ ¢

A — 1 h;% L(\;}83 kyl/‘sta ( P) pr—ss2i
2445409315 bj"‘” hf'zg ¢kx°'5

(A.45)

0.28143.07,2
he2p37h?

h, =| 42480690310~
Lv»; kyta(P)Il—sszi

1.5 %.95
] ] (A .46)

A= ! h;)»lh;9|_&45 kyta(P)Pafsszi - (A.47)
3567056.779 b3‘77rv8‘25 )

¢
0.4
ho— 1 1 kyta(P)eI—ss3i . (A.48)
Y| 5423265 hO2L08K0% ¢ '
—04
) :[ 1 k,” (ta(P)Eusssa jm (A.49)
y 3938496 hZO.25 L(\:\}S7h)(().2k)(<).l4 ¢
0.15 15 14
h _ 1 LW ky ta(P)pr—SS3i (ASO)
Y| 31.2191( h*Zh2 S
_ 1.5_0'4
h = 552 13266 hﬁ;zj(kyu;)”sﬂ "
_ 1_5—0.4
h _ 1 L&,]S kyta(P)hl—ss3i (A.52)
Y1 271.1633| h"*h}? ¢
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h = 1 ( 1 ](kyta(P)el—sszﬁ " (A53)
Y1 281.4485( h2L25n0» @
r _ 1.36 04
h = 1 k;s L (P)enssai (A.54)
y T 204.3942 h*%¥ L(\)A',57h0'2k0'14 P

0.4
N 1 LS\'IIS k;,sta(P)p,_ssM (A.55)
Y 116.2016 h**h°? #h”

0.15 " "
. | L\N kyta(P)ll—ss4i (A.56)
" 7| 281.4485 h*n12 ¢

r 15704
h _ 1 1 kyta(P)el—sssi
* 7| 322465\ WLLFHYF /

0.4

- ) 1.36
|1 ky” ta (P)e_sssi (A.58)
T 234181 PRk ¢

1 01 k!t (p) o 04
h _ W y a pr—sssi A.59
g {1.8563(hf’25h3'2] Pk (39

0.4
1 L2 V(KL Phyasi )
h = ya ss5i A60
y {32.2465[hf‘25h;2 p (A0

LW [ kyta ( P)el— pssi JOAS

(A.57)

_ (A.61)
17.3716 @

0.64
AZ 1 L&Hkg‘mk;}'s ta(F))EII—pssi (A.62)
23.9206 ¢

A _ \/ kxkyta ( P) pr—pssi

(A.63)
301.7727¢
K P )
A=£ hx j ya( )Il—p53| (A.64)
17.3716 é
Kt (P s )
A=34.7432h, {%] (A.65)

A.2. Skin factors

5459 L Am(P),

_ _2 kzta(P)el (A66)
34.74321h, | [t*Am(P)'],,

¢

S, = 1 L‘(;'/Zsk;)'s ta(P)EII " An‘(P)E"
#1252313 hk™ | ¢ [t*AM(P)

_L k| AP, (ko (A.68)
(sz+sm3_2hz lg{[t*Am(P)ﬂpr {m(wgp)v}%wﬂ

(sx+sz+sm'>={ AP, —ZMLWM K Jta@)..
[t*Am(P)], hh, J\\1207.14

L [ktPy }{ AT(P), _2}(A.70)
17.37nh, ¢ [t*Am(P)],

—2.778} (A.67)

(A.69)

(Sx +Sz +Sm'+snl):|:

5.5663L0%02° [k )
y z (tDapB) 0.5

0.621.05,125 4|1
h, hy r, ky

(s,+5,+5, '+SPB)=[

{ m(P), 4
[t *m(P), ]

(A.71)
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