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ABSTRACT 

Some low and ultra-low permeability reservoirs are tested by recording the flow rate variation while the well-
flowing pressure is kept constant. A typical situation occurs in shale formations which permeability goes to the order of 
nanodarcies. The mentioned procedure is normally referred as rate transient analysis and the interpretation of the reciprocal 
of the flow rate is very similar to the interpretation of a pressure test. The application of the TDS Technique for transient-
rate analysis of horizontal wells in oil and gas homogeneous anisotropic reservoirs is presented here.  New governing 
equations for hemi linear flow, parabolic flow, several situations of steady-state and pseudosteady-state flows are 
introduced and used to generate practical analytical expressions for the determination of well and reservoir parameters. The 
developed equations were successfully tested with synthetic examples. 
 
Keywords: transient-rate analysis, horizontal well flow regimes, anisotropy, TDS Technique, hemi linear flow, Parabolic Flow, close 
and open boundaries. 
 
1. INTRODUCTION 

Nowadays, with the understandable 
overpowering from horizontal wells over vertical wells 
and the constant struggling with unusual-shaped reservoirs 
with different sceneries of boundaries have become 
necessary to find out a way to analyze transient-rate tests 
in horizontal wells, and then, provide representative 
estimation of the different reservoir and well parameters of 
the reservoir. There have been some recent publications on 
rate-transient analysis using either conventional analysis 
of the TDS Technique, Tiab (1993). For instance, Escobar, 
Rojas and Cantillo (2012) published an article about 
straight-line conventional rate-transient analysis for 
vertical wells in long homogeneous and heterogeneous 
reservoirs. Given the practicability of TDS technique over 
the conventional technique when analyzing pressure 
testing, Escobar, Rojas and Bonilla (2012) worked on rate-
transient-rate for vertical wells in long homogeneous and 
naturally fractured reservoirs using the TDS technique. 
Then,  few years later, Escobar, Castro and Mosquera 
(2014) worked on rate-transient analysis for hydraulically 
fractured vertical oil and gas wells and, more recently, 
Escobar, Montenegro and Bernal (2014) developed a TDS 
methodology for the interpretation of  rate-transient 
analysis for hydraulically-fractured gas shale wells using 
the concept of the induced permeability field. 

When talking about transient-rate analysis 
interpretation for horizontal wells in hydrocarbon 
homogeneous anisotropic reservoirs with closed and open 
boundaries there are currently no publications on that 
matter. There are some close-related researches on that 
topic by Escobar, Rojas and Ghisays-Ruiz (2015) in which 
they worked on rate-transient analysis for hydraulically-
fractured horizontal wells in naturally-fractured shale gas 
reservoirs, increasing the application of the TDS 
Technique to the heyday of hydrocarbon industry.  

In this work an application of the TDS technique to 
analyze rate-transient tests that were run in horizontal 
wells in oil and gas homogeneous anisotropic reservoirs is 
presented. The original work of its kind by Engler and 
Tiab (1996a, 1996b) -which were based on the model by 
Goode and Thambynayagam (1987) - only goes until late 
linear flow regime. Then, in this work -which is based  on 
these just mentioned- were added different reservoir 
geometries and models which give form to several flow 
regimes according to its boundary configuration and to the 
position of the well inside the reservoir.  

Following the formulation proposed by Engler 
and Tiab (1996b) who presented the TDS technique for 
interpreting pressure tests in horizontal wells in 
homogeneous and anisotropic porous media; the 
governing equations of such flow regimes as early radial, 
early linear, pseudo radial and late linear were transformed 
from pressure-transient analysis to rate-transient analysis. 
A similar treatment was performed on the elliptical flow 
regime given by Martinez, Escobar and Bonilla (2012), in 
which they proposed a reformulation of the elliptical flow 
governing equation for a more complete well test data 
interpretation for horizontal wells for pressure-transient 
analysis. 

Following the ideas exposed by Escobar, 
Hernandez and Hernandez (2007) on long homogeneous 
reservoirs, we also performed some analysis on off-
centered wells in long homogeneous anisotropic reservoirs 
to provide the formation of hemi linear flow regime, 
parabolic flow regime, pseudo steady state flow and five 
cases of steady-state flow in rate-transient testing 
according to the reservoir boundaries and dimensions. 
Equations for each flow regime were developed and 
successfully tested with synthetic examples. Only ine 
example is presented due to space-saving reasons. 

For the extension to gas wells, the pseudo   
functions were also used: the one from Agarwal (1949) 
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introduced the pseudotime function to account for the 
dependence on time of the gas viscosity and total system 
compressibility and the other one from Hussainy et al. 
(1966) who presented the gas pseudo pressure concept. 
 
2. MATHEMATICAL FORMULATION 
 
2.1. Mathematical model 

When working with rate-transient analysis, the 
dimensionless rate inside a reservoir has an approximate 
performance equal to the inverse of the dimensionless 
pressure. This is: 
 

1
D

D

P
q

                                                              (1) 

 
This approach is not always reliable; therefore, 

for several studied flow regimes in rate-transient analysis, 
the pressure equations were rewritten and some constants 
that accomplish linearization were added. 

The dimensionless variables proposed for rate-
transient analysis were obtained by rewriting all 
dimensionless variables of Tiab and Engler (1996b) to 
allow for the conversion from dimensionless to 
dimensional values: 
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Goode and Thambynayagam (1987) presented the 

mathematical solution for horizontal well pressure 
reservoir pressure behavior in both homogeneous and 
heterogeneous reservoirs. This formulation was used by 
Engler and Tiab (1996a, 1996b). This mathematical 
solution was also adopted in this work.  
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Figure-1. Reservoir geometry cases for off-centered horizontal wells in the reservoir. (A) Well located near the open 
boundary and the other boundary is closed. (B)  Well is located within two open boundaries. (C) Well located near the 

closed boundary and the other boundary is open. (D) All closed boundaries. After Pabon and Cortes (2016) 
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2.2. TDS technique 
The governing flow regime models presented by 

Engler and Tiab (1996b) for pressure-transient analysis were 
taken and with the use of the statement given in Equation (1) 
a reformulation were made to find the expressions 

corresponding to the reciprocal rate and reciprocal rate 
derivative for each flow regime:  
 
For early radial flow: 
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Figure-2. Reservoir geometry cases for centered horizontal wells in the reservoir (A) The reservoir 
has both open boundaries. (B)  The reservoir has one open boundary. (C) The reservoir has 

all closed boundaries. After Pabon and Cortes (2016). 
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Replacing the dimensionless derivative given by 

Equation (3) into Equation (8), it yields: 
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Dividing Equation (7) by Equation (8) and, then, 

substituting Equations (2), (3) and (4) into the resulting 
value, we obtain: 
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For early linear flow: 
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Replacing the dimensionless variables given by 

Equation (3) and (4) into Equation (12), it yields: 
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Dividing Equation (11) by Equation (12) and, 
then, substituting Equation (2), (3) and (4) into the result, 
we obtain: 
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The governing equation for pseudo radial flow is: 
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Replacing the dimensionless quantity given by 

Equation (3) into Equation (17), it yields: 
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Dividing Equation (16) by Equation (17) and, 

then, substituting Equations (2), (3) and (4) into the result, 
we obtain: 
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For late linear flow: 
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Replacing the dimensionless reciprocal derivative 

and time given by Equations (3) and (4) into Equation (21), 
it yields: 
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Dividing Equation (20) by Equation (21) and, 
then, substituting Equation (2), (3) and (4) into the result, 
we obtain: 
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For the elliptical flow regime, Martinez et al. 

(2012) presented the pressure and pressure derivative 
dimensionless governing equations for transient-pressure 
analysis which traduced to rate-transient analysis: 
 

0.140.72 0.28
0.362.6562

(1 )
 

  
 

yw w
D Dell Ell

z x

kr L
q t s

h k
  (25) 

 
0.140.72 0.28

0.360.95621522
[ *(1 )']

 
  

 

yw w
D D Ell Dell

z x

kr L
t q t

h k
  (26) 

 
Replacing the dimensionless quantities given by 

Equations (3) and (4) into Equation (26), it yields: 
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Dividing Equation (25) by Equation (26) and, 

then, substituting Equation (2), (3) and (4) into the result, 
we obtain: 
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For vertical wells, Escobar et al. (2007) 

differentiated between linear flow (dual linear flow) when 
there exist two linear flows at both sides of the well and 
single linear (hemi linear flow) in which a linear flow 
takes place at only one lateral side of the well. This 
definition is used by Pabon and Cortes (2016). Hemilinear 
flow occurs within the reservoir when the horizontal well is 
located near a closed boundary, regardless the far boundary 
is closed (late pseudosteady - state period) or open (steady-
state). Reservoir geometries of this flow regime are shown in 
Figure-1 (C) and (D). The governing equation of the 
reciprocal rate derivative for hemi linear flow regime was 
empirically obtained by Pabon and Cortes (2016). Then, the 
governing reciprocal rate equation was obtained by 
integration: 



                                    VOL. 11, NO. 17, SEPTEMBER 2016                                                                                                    ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                             10474 

 
0.52

764
(1 )

100

( )

   
   
   

  

hl

w w
D hl D

z x

y
x z m hl

z

L r
q t

h h

k
s s s s

k

                (30) 

 
The dimensionless governing reciprocal rate 

derivative is: 
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Replacing the dimensionless quantities given by 

Equations (3) and (4) into Equation (31), it yields: 
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Dividing Equation (30) by Equation (31) and, 

then, substituting Equations (2), (3) and (4) into the 
resulting expression, it yields: 
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Figure-3. Dimensionless YD
-1.6 (rw/hy) 2.5 (Lw/hz) 0.11 tD vs (hy/by) 1.5 (Lw/hz) 0.675 tD*PD’  

log-log plot with unified parabolic flow regime. After Pabon and Cortes (2016) 
 

The occurrence of parabolic flow within the 
reservoir results when the horizontal well is located near an 
open boundary regardless the far boundary is either closed or 
open to flow. Reservoir geometries of this flow regime are 
shown in Figure-1 (A) and (B). ). The governing equation of 
the reciprocal rate derivative for parabolic flow regime was 
empirically obtained from Figure-3 by Pabon and Cortes 
(2016). Then, the governing rate-transient equation was 
obtained by integration: 

The dimensionless governing reciprocal rate is: 
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The dimensionless governing reciprocal rate 

derivative is: 
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Replacing the dimensionless variables given by 

Equations (3) and (4) into Equation (36), it yields: 
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Dividing Equation (35) by Equation (36) and, 

then, substituting Equations (2), (3) and (4) into the result, 
we obtain: 
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For the first case of steady-state, the reservoir 

geometry is shown in Figure-1 (B). The dimensionless 
governing reciprocal rate derivative equation is: 
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Replacing the dimensionless quantities given by 

Equations (3) and (4) into Equation (39), it yields: 
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For the second case of steady-state period, the 
reservoir geometry is shown in Figure-1 (A). The 
dimensionless governing reciprocal rate derivative 
expression is: 
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Replacing the dimensionless parameters given by 

Equations (3) and (4) into Equation (41), it yields: 
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The third case of steady-state is sketched by the 

reservoir geometry of Figure-1 (C). The dimensionless 
governing reciprocal rate derivative equation is: 
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[ *(1/ ) ']

817.45774


ss

w y
D D ss DA

z x

L h
t q t

h h
         

(43) 

  
Replacing Equations (3) and (4) into Equation (43), 

it yields: 
 

1
2 0.15 0.86 2.7

3
32

[ *(1 ) ']
655.027 

 
  
  

y w z ss
y ss

t

k L Ph t
h t q

B c
  (44) 

 

The fourth case of steady-state behavior is 
represented by the reservoir geometry shown in Figure-2 
(B). The dimensionless governing reciprocal rate derivative 
equation is: 
 

0.85 1.5
1

4 40.75 0.8
[ *(1/ ) '] ( )

1076
 w y

D D ss DA ss
z x

L h
t q t

h h
  (45) 

 
Replacing the dimensionless parameters given by 

Equations (3) and (4) into Equation (45), it yields: 
 

0.42 0.15 0.75

4
42 0.2

[ *(1 ) ']
497.636 
   

   
   

y w z ss
y ss

x t

k L Ph t
h t q

h Bc
       

(46) 

 
For the fifth case of steady-state behavior, the 

reservoir geometry is shown in Figure-2 (A) and the 
dimensionless equation of the governing reciprocal rate 
derivative is given by: 
 

0.85 1.5
1

5 50.75 0.8
[ *(1/ ) '] ( )

6200.5952
 w y

D D ss DA ss
z x

L h
t q t

h h         

(47) 

 
Replacing the dimensionless quantities given by 

Equations (3) and (4) into Equation (47), it yields: 
 

0.42 0.15 0.75

5
52 0.2

[ *(1 ) ']
86.3557 
   

   
   

y w z ss
y ss

x t

k L Ph t
h t q

h Bc
  (48) 

 
For the pseudosteady-state period, the reservoir 

geometry is shown in Figure-1 (D) and Figure-2 (C).  The 
dimensionless governing reciprocal rate derivative equation 
is: 
 

55
[ *(1/ ) '] ( )

10

 

  
 

w
D D pss DA pss

z

L
t q t

h
                (49) 

 
Again, replacing Equations (3) and (4) into 

Equation (49), and solving for reservoir area, it yields: 
 

1

1.5543 [ *(1 ) '] 
  

       

pss

z pss t

tB
A

h P t q c
  (50) 

 
2.2.1. Intersection points between flow regimes 

Pabon and Cortes (2016) intercepted several 
reciprocal rate derivative equations to obtain useful 
intersection point expression, starting with the intersection 
times between early radial and other flows with different 
slopes. For instance, the intersection time between early 
radial and early linear flow regimes is given by: 
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2
1

17.4974

  
   

  
er eli

y z
D

z w

k h
t

k r
                                 (51) 

 
After replacing the dimensionless time and 

solving for the vertical permeability, we obtain: 
 

2

216.7285




 t z
z

er eli

c h
k

t
                                                (52) 

 
The intersection time between the early radial and 

elliptical flow regimes is given by: 
 

0.36 0.14
0.36

0.5 0.72 0.281.91243044


er Elli

y x z
D

z w w

k k h
t

k r L
                (53) 

 
After replacing the dimensionless parameters in 

the above expression and solving for the vertical 
permeability, it yields: 
 

20.360.14

0.28
10.158152





  
   
   

x z t
z

w er Elli

k h c
k

L t
                (54) 

 
The obtained expression for the intersection time 

between the early radial and late linear flow regimes is: 
 

2
1

17.4974

 
  

 
er lli

y x z
D

z w w

k h h
t

k L r
                               (55) 

 
In real units, the vertical permeability is brought 

from the above equation: 
 

2
216.7285



 
  

 
t x z

z
er lli w

c h h
k

t L
                               (56) 

 
The expression for the intersection time between 

the early radial and hemi linear flow regimes is: 
 

2

183.3735

 
  

 
er hli

y x z
D

z w w

k h h
t

k r L
                               (57) 

 
From this, the vertical permeability is obtained: 

 
2

20.6801



 
  

 
t x z

z
er hli w

c h h
k

t L
                               (58) 

 
The intersection time between the early radial and 

parabolic flow regimes is given by: 
 

0.62 1.05 1.25
0.5

0.62 2.3
( )

9.6466

  z y w y

D er PBi
w y z

h h r k
t

L b k
                (59) 

 
The use of Equation (3) into Equation (59) allows 

obtaining: 
 

1
0.5 2.30.62 1.05 0.25

0.5 0.62594.0448 


  
   
   

y z y w er PBi
y

z w t

k h h r t
b

k L c
  (60) 

 
The time of intersection between the early radial 

flow regime and the first case of steady-state period is 
governed by: 
 

1

2.7 0.011.2
1

0.054835689.538


   

        
er ss i

y ywz
DA

w y x z

h krh
t

L b h k
  (61) 

 
After plugging the dimensionless time, we can 

obtain: 
 

1
0.5 1.01 0.05 2.7 1.7

10
1.5 1.2 0.01

1

1.8337844 10




  
   
   

z x w yt
y

er ss i y z w

k h L bc
h

t k h r
    

(62) 

 
The dimensionless expression for the time of 

intersection between the early radial flow regime and 
second case of steady-state period is: 
 

2

0.96 2.8
1

0.1 2.921831275.544

 
er ss i

z y y
DA

w y z

h h k
t

L b k
                (63) 

 
After replacing the dimensionless parameters in 

the above expression, and solving for reservoir area, it 
yields: 
 

1.5 0.96 2.8

2
0.5 0.1 2.92

1

6944541312 
 

  
 

y z yer ss i

t z w y

k h ht
A

c k L b
  (64) 

 
The intersection time between the early radial 

flow regime and the third case of steady-state period is 
governed by: 
 

3

0.86
1

0.85 1.7
408.7288



 
er ss i

y z x
DA

z w y

k h h
t

k L h
                (65) 

 
After replacing the dimensionless time and 

solving for reservoir length, we obtain:  
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1
1.5 0.86 2.7

3
0.5 0.85

1

9.278 


  
   
   

y z er ss i
y

z w t w

k h t
h

k L c r
                (66) 

 
The time of intersection between the early radial 

flow regime and the fourth case of steady-state period 
leads to obtain the following dimensionless expression: 
 

0.75 0.8
1

4 0.85 1.5
( ) 538

  y z x
DA er ss i

z w y

k h h
t

k L h
                               (67) 

 
Again, after replacing the dimensionless time and 

solving for reservoir length, we obtain:  
 

1
1.5 0.75 2.5

4
0.5 0.85 0.27.048676 


  

   
   

y z er ss i
y

z w x t

k h t
h

k L h c
  (68) 

 
The intersection time between the early radial 

flow regime and the fifth case of steady-state period is 
represented by: 
 

0.75 0.8
1

5 0.85 1.5
( ) 3100.2976

  y z x
DA er ss i

z w y

k h h
t

k L h
                (69) 

 
After replacing the dimensionless time and 

solving for reservoir length, it yields: 
 

0.41.5 0.75

5
0.5 0.85 0.2

1

1.22317 


  
   
   

y z er ss i
y

z w x t

k h t
h

k L h c
  (70) 

 
The intersecting time between the early radial 

flow and pseudosteady state period provides: 
 

1

34.5575

 
  

 er pssi

y z
DA

z w

k h
t

k L
                               (71) 

 
After replacing Equation (5) in Equation (71) and 

solving for the area, it becomes: 
 

1

109.7356 
  

  
 

er pssi w
y z

t z

t L
A k k

c h
                (72) 

 
The time of intersection between the first case of 

steady-state period and early linear flow regime gives: 
 

0.05 1.01 2.7
1.5

1 1.7 0.2 2.99

1156036.299
( )   w x y

D el ss i
y z w

L h b
t

h h r
                (73) 

 

This becomes in real units once the dimensionless 
time is substituted in the above expression; 
 

1
1.5 1.70.05 1.01 2.7 0.01

0.2
1

2.69964 



  
       

w x y w t
y

z y el ss i

L h b r c
h

h k t
  (74) 

  
The time of intersection between the first case of 

steady-state period and elliptical flow regime gives in 
dimensionless form is given by Equation (75) and after 
replacing the dimensionless quantities allows finding 
reservoir length: 
 

0.142.7 1.01
1.36

1 1.7 0.2 2.73 0.275

2528557.085
( ) 

 
   

 

y x x
D Ell ss i

y z w w y

b h k
t

h h r L k
  (75) 

 
from which reservoir length is obtained once the 
dimensionless time is substituted: 
 

1
1.36 1.711 2.7 1.01 0.14

0.2 0.01 0.275 1.5
1

1.8315444 10 



   
   
   

y x x t
y

z w w y Ell ss i

b h k c
h

h r L k t
  (76) 

 
As for the former case, the intersection time 

between the first case of steady-state and pseudo radial 
flow regime leads to: 
 

1

2.7 0.01

0.2 0.95

4835689.538


   
        

pr ss i

y x x
DA

z w y w y

b h k
t

h L h r k
  (77) 

 
which leads finding; 

1
10 0.5 1.01 2.7 1.7

0.2 0.95 1.5 0.01
1

1.83378443 10 



 
  
  

x t x y
y

z w y w pr ss i

k c h b
h

h L k r t
                (78) 

 
The time of intersection between the first case of 

steady-state period and the late linear flow regime gives: 
 

2.01 2.7
1.5

1 0.95 0.2 3.01 1.7
( ) 1156036.299  x y

D ll ss i
w z w y

h b
t

L h r h
 (79) 

 
After replacing the dimensionless time and 

solving for reservoir length: 
 

1
1.5 1.72.01 2.7

0.95 0.2 0.01
1

2.69964 



  
       

x y t
y

w z w y ll ss i

h b c
h

L h r k t
 (80) 

 
The time of intersection between the first case of 

steady-state period and parabolic flow regime provides 
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Equation (81) and after replacing the dimensionless 
quantities allows finding reservoir length: 
 

0.4 1.01
0.5

1 0.58 0.65 0.76 0.57

501284.3425
( )   y x

D PB ss i
z y w w

b h
t

h h r L
                (81) 

 
1

0.5 0.650.4 1.01 0.24

0.58 0.57
1

30869463.01 



  
       

y x w t
y

z w y PB ss i

b h r c
h

h L k t
  (82) 

 
Other useful expressions to find reservoir area or 

reservoir length use the time of intersection of the second 
case of steady- state period with early linear flow regime -
Equation (83), elliptical flow regime -Equation (85), with 
pseudo radial flow regime, Equation (87) and with late 
linear flow regime –Equation (89). Then; 
 

0.1 2.92 1.04
1.5

2 2.8 3
( ) 437790.9265  w y z

D el ss i
y w

L b h A
t

h r
  (83) 

 
1.511 2.8

2

0.1 2.92 1.04

1.0223546 10


  

  
 

y y el ss i

w y z t

h k t
A

L b h c
                (84) 

 
0.142.92 0.04

1.36
2 2.8 0.18 2.72

957564.524
( ) 

 
   

 

y z x
D Ell ss i

y w w y

b h A k
t

h L r k
  (85) 

 
1.362.8 0.18 1.5

2
10 2.92 0.04 0.147.0543706 10 

 
    

y w y Ell ss i

y z x t

h L k t
A

b h k c
  (86) 

 

2

2.92 0.04

2.8 0.9

1831275.544



pr ss i

y z x
DA

y w y

b h k
t

h L k
                (87) 

 
1.5 2.8 0.9

2

0.5 2.92 0.04

1

6944541312 
 pr ss i y y w

t x y z

t k h L
A

c k b h
                (88) 

2.92 0.04 2
1.5

2 1.8 0.9 3

437790.9265
( )   y z x

D ll ss i
y w w

b h h
t

h L r
                (89) 

 
1

1.5 1.82.92 0.04 2
11

0.9
2

1.0223546 10 y z x t
y

w y ll ss i

b h h c
h

L k t





  
          (90) 

 
Also, reservoir area or reservoir length can be 

found from the intersection of the second case of steady- 
state period and parabolic flow regimes. Then:  
 

0.62
0.5

2 0.34 1.75 0.52 0.75

189836.3718
( )   y

D PB ss i
z y w w

Ab
t

h h L r
                  

  (91) 

 
0.34 1.75 0.52

2

0.25 0.6211690265.11 
 z y w y PB ss i

w y t

h h L k t
A

r b c
                (92) 

 
The time of intersection between the third case of 

steady-state period with early linear flow gives Equation 
(93), with elliptical flow gives Equation (95), with pseudo 
radial equation (97), with late linear flow gives Equation 
(99) and with hemilinear flow gives Equation (101). Once 
the dimensionless time is replaced in these resulting 
expressions, reservoir length is solved for: 
 

0.85 2.7 0.14
1.5

3 3
( )

1709.7092  w y z
D el ss i

w

L h h
t

r
                               (93) 

 
1

1.5 2.7

3

0.85 0.14

1

136.588 


  
   
   

y el ss i
y

w z t

k t
h

L h c
                (94) 

 
0.140.57 2.7 0.14

1.36
3 2.72

( )
781.6655

 
   

 

w y z x
D Ell ss i

w y

L h h k
t

r k
                (95) 

 
1

1.36 2.71.5

3
0.57 0.14 0.14

1

94.24738
yEll ss i

y
t w z x

kt
h

c L h k


  
   
             

(96) 

 

3

1.7 0.14

0.15408.72887


pr ss i

y z x
DA

w x y

h h k
t

L h k
                             (97) 

 
1

1.5 2.70.15
3

0.5 0.149.278
 

  
  

y pr ss i w
y

t x z

k t L
h

c k h
                             (98) 

 
2.7 0.14

1.5
3 3 0.15

1
( )

1709.7092  y z x
D ll ss i

w w

h h h
t

r L
              (99) 

 
1

1.5 2.70.15
3

1.14136.588


  
   
   

y ll ss i w
y

t z x

k t L
h

c h h
              (100) 

 
2.7 0.14

1.5
3 0.15 3

1
( )

5534.821  y z x
D hl ss i

w w

h h h
t

L r
              (101) 
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1
1.5 2.70.15

3

0.14

1

42.1921 


  
   
   

y hl ss i w
y

t z x

k t L
h

c h h
              (102) 

 
Reservoir length is also found from the time of 

intersection formed by the fourth case of steady-state 
period with early linear flow - Equation (103) - with 
elliptical flow -Equation (105) - with pseudo radial flow -
Equation (107) – and with late linear flow -Equation 
(109). 
 

0.85 2.5 0.25 0.2
1.5

4 3

1
( )

2250.449  w y z x
D el ss i

w

L h h h
t

r
              (103) 

 
0.41.5

4

0.85 0.25 0.2

1

103.7685 


  
   
   

y el ss i
y

w z x t

k t
h

L h h c
      

(104) 

 
0.140.57 2.5 0.25 0.2

1.36
4 2.72

( )
1028.8876

 
   

 

w y z x x
D Ell ss i

w y

L h h h k
t

r k
              (105) 

 
0.41.361.5

4
0.57 0.25 0.2 0.1471.60153 


  
   
   

y Ell ss i
y

w z x x t

k t
h

L h h k c
         

(106) 

 

4

1.5 0.25

0.8 0.15

1

538


pr ss i

y z x
DA

x w y

h h k
t

h L k
                             (107) 

 
0.41.5 0.15

4

0.2 0.25 0.57.04867675
 

  
  

y pr ss i w
y

t x z x

k t L
h

c h h k
            (108) 

 
2.5 1.2 0.25

1.5
4 0.15 3

( )
2250.449  y x z

D ll ss i
w w

h h h
t

L r
                             (109) 

 
0.41.5 0.15

4

1.2 0.25

1

103.7685 


  
   
   

y ll ss i w
y

t x z

k t L
h

c h h
         

(110) 

 
Reservoir length is also found from the 

intersection time points of the fifth case of steady-state 
period with early linear flow -Equation (111)- with 
elliptical flow -Equation (113)- with pseudo radial flow -
Equation (115)- and with late linear flow (117). 
 

0.85 2.5 0.2 0.25
1.5

5 3

1
( )

12968.51723  w y x z
D el ss i

w

L h h h
t

r
              (111) 

 

0.41.5

5

0.85 0.2 0.25

1 1

18 


  
   
   

y el ss i
y

w x z t

k t
h

L h h c
              (112) 

 
0.140.57 2.5 0.25 0.2

1.36
5 2.72

1
( )

5929.1035
w y z x x

D Ell ss i
w y

L h h h k
t

r k

 
   

    (113) 
 

0.41.361.5

5
0.57 0.25 0.2 0.1412.425137 


  
   
   

y Ell ss i
y

w z x x t

k t
h

L h h k c
        

(114) 

 

5

0.25 1.5

0.15 0.8

1

3100.2976


pr ss i

z y x
DA

w x y

h h k
t

L h k
                             (115) 

 
0.40.15 1.5

5

0.2 0.25 0.51.22316906
 

  
  

pr ss i w y
y

t x z x

t L k
h

c h h k
             (116) 
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5 0.15 3

1
( )
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w w

h h h
t

L r
              (117) 
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5

1.2 0.25

1

18 


  
   
   

y ll ss i w
y

t x z

k t L
h

c h h
              (118) 

 
The late pseudosteady-state period also intersects 

with such other flow regimes as early linear –Equation 
(119)- elliptical –Equation (121)- pseudo radial –Equation 
(123)- late linear –Equation (125)- and hemilinear –
Equation (127). All of these intercepts allow finding 
reservoir area: 
 

0.5 1
( )

8.26143744
 D el pssi

w w

A
t

L r
              (119) 

 
0.5

7.454 
 

  
 

y el pssiw

t

k tL
A

c
                             (120) 

 
0.14

0.64
0.72 1.28

1
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 
  

 

y
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w w x
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t

L r k
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 
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 

w y x Ell pssi

t

L k k t
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1
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

pr pssi

y
DA

x

k
t

k
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0.51
( )

109.735 
 pr pssi

y x
t

t
A k k

c
                             (124) 

 

0.5 1
( )

8.26143744 D ll pssi
w x

A
t

r h
                             (125) 

 
0.5

7.454 
 

  
 

y ll pssix

t

k th
A

c
                             (126) 

 

0.5 1
( )

2.551962 D hl pssi
w x

A
t

r h
                             (127) 

 
0.5

24.13074 
 

  
 

y hl pssix

t

k th
A

c
                             (128) 

 
Based upon the works of Engler and Tiab 

(1996b) and Martinez et al. (2012), Pabon and Cortes 
(2016) also developed all the equations for the 
interpretation of pressure tests in horizontal gas wells 

using the TDS Technique. These equations are reported in 
Appendix A. 
 
3. SYNTHETIC EXAMPLE 

The simulated test reported in Figure-4 was run 
for a homogeneous, isotropic, oil reservoir which 
geometry is shown in Figure-1 (A), with the information 
given below;  
 
B = 1 bbl/STB  ∆P= 300 psia 
hz = 100 ft   = 1 cp  
Lw = 2000 ft  ct = 3x10-6 psi-1   
C = 0 STB/psi   = 10 %   
k = 50 md      rw = 0.3 ft 
hx = 20000 ft  A = 3840000000 ft2 
hy = 267000 ft    
 
Estimate permeability (k), horizontal well length (Lw), 
Reservoir width (hx), reservoir length (hy) using the TDS 
Technique.  
 
Solution  
The Characteristic points were read from Figure-4. They 
are reported in Tables-1 and -2. 

 
Table-1. Characteristic points from Figure-4. 

 

Time, hr 
Reciprocal rate, 

1/BPD 
Reciprocal rate 

derivative, 1/BPD  
tel 0.04 (1/q)el 2.636×10-5 [t*(1/q)’]el 4.003×10-6 

tEll 2.524 (1/q)Ell 7.742×10-5 [t*(1/q)’]Ell 2.478×10-5 

tpr 200.475 (1/q)pr 2.447×10-4 [t*(1/q)’]pr 4.309×10-5 

tll 798.105 (1/q)ll 3.091×10-4 [t*(1/q)’]ll 5.808×10-5 

thl 20047.48 (1/q)hl 1.304×10-3 [t*(1/q)’]hl 9.048×10-4 

tss3 634000 (1/q)ss3 7.292×10-3 [t*(1/q)’]ss3 1.111×10-3 

 
Table-2. Intersection points from Figure-4. 

 

Time intersection (hr) 

tel-ss3i 120000 

tEll-ss3i 480000 

tpr-ss3i 19000000 

tll-ss3i 400000 

thl-ss3i 250000 

 
Table-3. Characteristic maximum points from Figure-4. 

 

Time (hr) Transient-rate derivative 

tX3 252000 [t*(1/q)’]X3 2.373×10-3 

 

Use of Equations (14), (18), (23), (28) and (32) 
allow finding and verifying reservoir permeability: 
 

2

6

2 6

4.7956(1)

(100)(300)(4.003 10 )

(1)(0.04)
53.156 md

(2000) (0.1)(3 10 )





 
   

 
  

yk
 

 

5

70.6(1)(1)
54.614 md

(100)(300)(4.309 10 )

 
   

x yk k  
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6

2

5

(1)(798.105)

(0.1)(3 10 )

(4.7956)(1)
50.381 md

(300)(100)(20000)(5.808 10 )








 
  

yk
 

 
1

0.36 0.50.64

0.72 0.14 5 6

(1) (1) 2.524
6.9501

(300)(2000) (50) (100)(2.478 10 ) (0.1)(3 10 )yk  

  
       

 

ky = 49.925 md 

 
 
 

 

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

/
) t *

(1 /
)

'

                   t,  hr






 q
  

 ,
  

t*
  

  
 q

  
', 

 p
si






5[ *(1/ ) '] 4.309 10 (d/STB)prt q  

3
3(1/ ) 7.292 10 (d/STB)ssq  

5(1 / ) 7.742 10 (d/STB)Ellq  

4(1/ ) 2.447 10 (d/STB)prq  

5[ *(1/ ) '] 2.478 10 (d/STB)Ellt q  

6[ *(1/ ) '] 4.003 10 (d/STB)elt q  

3 120000 hrel ss it  

3 634000 hrsst 798.105 hrllt 2.524 hrEllt 0.04 hrelt 

3 480000 hrEll ss it  

3 400000 hrll ss it  

5(1/ ) 2.636 10 (d/STB)elq  

200.475 hrprt 

3(1/ ) 1.304 10 (d/STB)hlq  

5[ *(1/ ) '] 5.808 10 (d/STB)llt q  

20047.489 hrhlt 

4[ *(1/ ) '] 9.048 10 (d/STB)hlt q  

3
3[ *(1/ ) '] 1.111 10 (d/STB)sst q  

3 250000 hrhl ss it  

3 19000000 hrpr ss it  

4(1/ ) 3.091 10 (d/STB)llq  

 
 

Figure-4. Reciprocal rate and reciprocal rate derivative versus time 
log-log plot for the synthetic example. 

 
2

6 4

(1)(20047.48) 15.5249(1)

(0.1)(3 10 ) (100)(20000)(300)(9.048 10 )yk  

   
        

 

ky = 54.65 md 
 

Determine horizontal well length with Equations 
(13) and (27):  
 

6 6

4.7956(1) (1)(0.04)

(100)(300)() (4.003 10 ) (50)(0.1)(3 10 )w
z

L
h P  
  

 

Lw = 2062.15 ft 
 

1
0.64 0.72

0.5 0.14 5

0.36

6

(1) (1)
6.9501

(300)(50) (50) (100)(2.478 10 )

2.524

(0.1)(3 10 )

wL




 
          

 

 
1997.92 ftwL   

 
Equations (22) and (33) are use to find the 

reservoir width (hx): 

5 6

4.7956(1) (1)(798.105)

(300)(100)(5.808 10 ) (0.1)(50)(3 10 )xh  
 

 
hx = 20076.1 ft 
 

4 6

15.5249(1) (1)(20047.48)

(100)(300)(9.048 10 ) (50)(0.1)(3 10 )xh  
 

 

hx = 20909.29 ft 
 

Equations (44), (94), (96), (98), (100) and (102) 
are employed to find the reservoir length (hy): 
 

1
2 0.15 0.86 2.7

3
2 6

(50) (2000) (300)(100) (634000)
(1.111 10 )

655.027(1) (1)(0.1)(3 10 )yh 


 
   

 

hy= 265424.03 ft  
 

1
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hy= 285529.33 ft  
 

1
1.36 2.71.5

6 0.57 0.14 0.14

1 480000 (50)

94.24738 (0.1)(1)(3 10 ) (2000) (100) (50)yh 

  
     

 

hy= 295964.25 ft  
 

1
1.5 0.15 2.7

6 0.5 0.14
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9.278(0.1)(1)(3 10 )(50) (100)yh 

 
   

 

 
hy= 289957.44 ft  
 

1
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6 1.14

(50)(400000) (2000)

(0.1)(1)(3 10 ) 136.588(100) (20000)

  
      

yh  

hy= 324067.7 ft 
 

1
1.5 2.70.15

6 0.14

1 (50)(250000) (2000)

42.1921 (0.1)(1)(3 10 ) (100) (20000)yh 

  
      
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hy= 282699.23 ft 
 
4. COMMENTS ON THE RESULTS 

As seen in the detailed example -with one single 
exception for the estimation of reservoir length- all the 
estimated parameters agree quite well with the simulated 
input results. The deviation may be due to the lacking of 
accuracy on the reading or the approximation is not exact 
but its result can be considered acceptable. 
 
5. CONCLUSIONS 

TDS technique was extended to characterize 
reciprocal rate and reciprocal rate derivative data in 
rectangular homogeneous anisotropic reservoirs for 
horizontal oil and gas wells. Equations were developed to 
calculate directional permeabilities, horizontal wellbore 
length, skin factor, reservoir area, etc. For off-centered 
wellbores along the reservoir length, some flow regimes 
develop: hemi linear, parabolic, five cases of steady-state 
and pseudosteady state. The expressions for such flow 
regimes were developed so they can be used to find 
reservoir parameters. Because of space-saving reasons, 
only one synthetic example is presented to demonstrate the 
accuracy and practicability of the proposed equations.  
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Nomenclature 
 

A Reservoir area, ft2 

B Volume factor, rb/STB 

by 
Eccentricity well within the reservoir in y-

axis, ft 
C Wellbore Storage 
ct Total system compressibility, psi-1 
hx Reservoir width, ft 
hy Reservoir length, ft 
hz Reservoir thickness, ft 
k Reservoir horizontal permeability, md 

Lw Horizontal well length, ft 
P Pressure, psi 
Pi Initial reservoir pressure, psi 
q Flow rate, BPD 
rw Wellbore radius , ft 
s Skin factor 
sm Mechanical skin factor 
sEll Elliptical pseudoskin factor
shl Hemilinear pseudoskin factor 
sPB Parabolic pseudoskin factor 
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sx x-direction pseudoskin factor 
sz z-direction pseudoskin factor 
T Reservoir temperature, °R 
t Time, hr 

ta(P) Pseudotime function, (hr)(psi)/cp 
tD Dimensionless time coordinate 

tDa(P) Dimensionless pseudotime function 
tD*PD’ Dimensionless pressure derivative 
(t*P’) Pressure derivative, psi 

t*Δm(P)′ Pseudopressure derivative function, psi2/cp 
tD*m(P)D

’ 
Dimensionless pseudopressure derivative 

function 
 
Greeks 
 
  Change, drop 
 Porosity, fraction 
 Viscosity, cp 

Suffices 
D Dimensionless 
el Early linear flow period

el-pssi 
Intercept of pseudosteady-state and early 

linear flow 

el-ss1i 
Intercept of first case of steady state and early 

linear flow 

el-ss2i 
Intercept of second case of steady state and 

early linear flow 

el-ss3i 
Intercept of  third case of steady state and 

early linear flow 

el-ss4i 
Intercept of fourth case of steady state and 

early linear flow 

el-ss5i 
Intercept of fifth case of steady state and early 

linear flow 
Ell Elliptical flow period 

Ell-pssi 
Intercept of pseudosteady-state and elliptical 

flow 

Ell-ss1i 
Intercept of first case of steady state and 

elliptical flow 

Ell-ss2i 
Intercept of second case of steady state and 

elliptical flow 

Ell-ss3i 
Intercept of  third case of steady state and 

elliptical flow 

Ell-ss4i 
Intercept of fourth case of steady state and 

elliptical flow 

Ell-ss5i 
Intercept of fifth case of steady state and 

elliptical flow 
er Early radial flow period 

er-eli Intercept of early radial and early linear flow 
er-Elli Intercept of early radial and elliptical flow 
er-hli Intercept of early radial and hemi linear flow 
er-lli Intercept of early radial and late linear flow 

er-PBi Intercept of early radial and parabolic flow 

er-pri 
Intercept of early radial and pseudo radial 

flow 

er-pssi 
Intercept of early radial and pseudosteady-

state 
er-ss1i Intercept of early radial and first case of 

steady state 

er-ss2i 
Intercept of early radial and second case of 

steady state 

er-ss3i 
Intercept of early radial and third case of 

steady state 

er-ss4i 
Intercept of early radial and fourth case of 

steady state 

er-ss5i 
Intercept of early radial and fifth case of 

steady state 
g Gas 
hl Hemilinear flow period 

hl-pssi 
Intercept of pseudosteady-state and hemi 

linear flow 

hl-ss3i 
Intercept of  third case of steady state and 

hemi linear flow 
i Intersection 
ll Late linear flow period 

ll-pssi 
Intercept of pseudosteady-state and late linear 

flow 

ll-ss1i 
Intercept of first case of steady state and late 

linear flow 

ll-ss2i 
Intercept of second case of steady state and 

late linear flow 

ll-ss3i 
Intercept of  third case of steady state and late 

linear flow 

ll-ss4i 
Intercept of fourth case of steady state and late 

linear flow 

ll-ss5i 
Intercept of fifth case of steady state and late 

linear flow 
PB Parabolic flow period 

PB-ss1i 
Intercept of first case of steady state and 

parabolic flow 

PB-ss2i 
Intercept of second case of steady state and 

parabolic flow 
pr Pseudoradial flow period 

pr-pssi 
Intercept of pseudosteady-state and pseudo 

radial flow 

pr-ss1i 
Intercept of first case of steady state and 

pseudo radial flow 

pr-ss2i 
Intercept of second case of steady state and 

pseudo radial flow 

pr-ss3i 
Intercept of  third case of steady state and 

pseudo radial flow 

pr-ss4i 
Intercept of fourth case of steady state and 

pseudo radial flow 

pr-ss5i 
Intercept of fifth case of steady state and 

pseudo radial flow 

pr-pssi 
Intercept of pseudosteady-state and pseudo 

radial flow 
pss Pseudosteady state 
ss Steady-state 
ss1 First case of steady-state 
ss2 Second case of steady-state 
ss3 Third case of steady-state 
ss4 Fourth case of steady-state
ss5 Fifth case of steady-state
t Total 
w Well 
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x x-direction index 
y y-direction index 
z z-direction index 

 
Appendix A. Gas reservoir equations 

Dimensionless pressure derivative: 
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A.2. Skin factors 
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