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ABSTRACT 

Productivity estimation is a crucial task for construction managers and general estimators to efficiently allocate 

the required resources in order to minimize the construction costs. There is a lack of research in terms of productivity 

modeling for precast erection process. Therefore, this study was designed to develop a model based on Artificial Neural 

Networks (ANN) to predict the installation times of the most commonly used precast elements namely: walls, columns, 

beams, and slabs. Installations of 220 precast elements were observed and significant factors influencing productivity were 

identified through stepwise Multiple Regression Analysis (MRA) to form the inputs of ANN model. Performance of the 

developed model on the test data showed its accuracy in predicting installation times of different precast components 

which confirmed the appropriateness of the model to be used by practitioners or construction management research 

scholars. 
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1. INTRODUCTION  

Precast Concrete (PC) components are 

manufactured in a controlled environment in the 

manufacturing yards or in the temporary precast plants 

which are set up near the construction sites.  Generally, 

use of PC elements results in higher quality products, 

faster installation of building structure, enhanced safety, 

reduction of wastage in materials, and more sustainability 

[1-4]. 

There are several studies available in the current 

literature that have focused on planning aspects of precast 

production as well as IT utilization for efficient tracking 

and precast yard management such as: 

 

 The use of Genetic Algorithms to develop a model to 

meet the site demands, optimize production costs of 

resources, and satisfy resource constraints for the 

precast manufacturing companies [5]. 

 Presenting a framework by utilizing Artificial 

Intelligence to reduce the level of finished goods in 

precast fabricators’ yard [6]. 
 Developing of flowshop sequencing models for 

specialized method of PC production as well as 

bespoke PC production to deal with challenges such 

as reliability of the product delivery methods and 

efficient usage of molds [7, 8]. 

 Utilization of Radio Frequency Identification (RFID) 

with Global Positioning System (GPS) to design and 

develop a system for better supply chain management 

[9]. 

 

The main theme of the abovementioned papers is 

the “off-site” production planning of PC components. 
There is a need to study “on-site” erection activities to 
better understand the factors affecting productivity of PC 

projects in order to develop more accurate estimation tools 

to be used by construction managers and general 

estimators for their scheduling purposes. Therefore, this 

research was designed to collect the factors influencing 

productivity and utilize Artificial Neural Networks (ANN) 

to estimate the total installation (erection) times of the 

most commonly used PC elements namely: walls, 

columns, beams, and slabs. A brief introduction to ANN 

and their applications in productivity estimation are 

provided in the next section followed by research 

methodology, discussions, and conclusions. 

 

1.2 Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) can be defined 

as a massive parallel distributed processor composed of 

simple processing units (neurons) which are capable of 

storing experiential knowledge and retrieving it for future 

use. Therefore, an ANN resembles human brain system in 

two respects [10]: 

 

 Knowledge acquisition from its environment through 

a learning process. 

 Storing the acquired knowledge is performed by 

interneuron connection strengths known as synaptic 

weights. 

 

A schematic diagram of a neuron (basic 

processing unit) is shown in Figure-1. Each neuron has 

two distinct segments: a summing junction and an 

activation function and its performance can be 

mathematically represented by: 

 �௝ = ∑)ܨ  ௜௠௜=1ݔ௝௜ݓ )                                                          (1) 
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Figure-1. Schematic diagram of a neuron. 

 

The activation function (F) can be in any 

mathematical form such as threshold function, piecewise 

linear function, tan hyperbolic function, and sigmoid 

function which has been considered as the most commonly 

used activation function because of presenting a graceful 

balance between linear and non-linear behavior which is 

shown in Figure-2 [10]. 

 

 
 

Figure-2. Sigmoid activation function. 

 

To develop any type of ANN, these neurons are 

grouped together to form several layers namely input, 

hidden, and output layers. A typical feed forward ANN 

that is generally referred to as multilayer perceptron is 

shown in Figure-3. The main objective of such a model is 

usually to produce the desired set of outputs through 

training the network by using a set of examples (training 

data) and applying some types of learning rules to change 

the connection weights accordingly [11].  

 

 
 

Figure-3. A typical fully connected feed forward ANN 

(multilayer perceptron). 

 

One of the most commonly used learning 

algorithms is Back-Propagation algorithm [12] which has 

two steps: feed forward data generation and backward 

error propagation. In this algorithm, a set of data is 

presented to the network (training set) and outputs are 

calculated based on the activation functions of the hidden 

and output layers. These “network outputs” (predicted 
outputs) are compared with the actual (desired) outputs 

and the difference (error) is propagated back to the 

network. The connection weights are updated accordingly 

and the outputs are calculated again. This procedure is 

repeated for several times (several epochs) until the 

network reaches its stop criteria. 

Conventional back propagation algorithm is 

based on the gradient descent method which directly 

minimizes in the direction of the steepest descent. Another 

alternative that is used in this paper is to apply conjugate 

gradient approach that is to construct a set of “n” 
directions that are all conjugate to each other and 

therefore, the minimization along one of these directions 

does not spoil minimization along other directions. As a 

result, faster convergence is achievable [13].  

 

1.3 ANN for productivity estimation 

Construction engineering and management has 

been considered as a fertile area for many expert systems 

applications including ANN due to the complexities 

involved in construction projects [14]. There is a 

substantial amount of research on the usage of ANN in 

construction management [14-16]. Productivity estimation 

is one of the vital tasks in areas such as resource allocation 

and management, scheduling, estimating, accounting, cost 

control, and payroll [17]. Earlier studies that have utilized 

ANN for productivity modeling in different construction 

processes and operations are as follows:  

 

 Effects of change orders, rework, and daily workload 

on labor productivity [18-21]. 

 Labor productivity rates for industrial construction 

activities [22]. 

 Concrete pouring, formwork, and finishing tasks 

[15,23-27]. 

 Hoisting times (hook times) of tower cranes [28-30]. 
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 Pile construction [31,32]. 

 Pipe installation [33]. 

 Plastering activities [34]. 

 Productivity estimation of construction earthmoving 

equipment such as excavators, push dozers, scrapers, 

loaders, and haul trucks [35-39]. 

 Concrete batch-plant-truck mixer operations and 

delivery systems [40,41]. 

 

According to the current literature, there is no 

study on precast installation productivity modeling and 

therefore, this study was designed to address this research 

gap. 

 

1.4. Factors affecting productivity of precast 

installation 

Figure-4 shows that a typical erection cycle 

consists of several activities with various resources. 

 

 
 

Figure-4. A typical PC erection process. 

 

Based on Figure-4, total of 18 variables were 

chosen to be relevant to productivity estimation of PC 

installation process. Crane productivity factors were 

extracted from literature [29,30] and other variables were 

selected based on several preliminary site visits and expert 

discussions. Because of the tropical weather of Singapore 

and Malaysia, factors relevant to weather conditions such 

as humidity, temperature, and wind speed were not 

included in the analysis. It is confirmed by crane operators 

that hoisting speed is affected by adverse weather 

conditions and hoisting will be stopped during strong wind 

or raining [42]. Some other qualitative factors such as 

crew skills and crane operator efficiency were not 

included as well due to the complexity of the measurement 

of these variables. However, expert interviews confirmed 

that after 1 or 2 years of relevant work in the PC erection, 

crew can be considered as being trained and data for this 

study were collected from contractors with more than 2 

years of experience in PC activities. Variables that were 

considered for PC erection productivity are as follows: 

 X1:  Component weight (ton) 

 X2:  Area of the load: biggest surface area of the 

component (m
2
) 

 X3:  Component length: longest length of the element 

(m) 

 X4:  Component height (m) 

 X5:  Component orientation: (X5a: vertical; X5b: 

horizontal) 

 X6:  Storage type: the element is stored among others 

(X6a) or being isolated (X6b) 

 X7:  Storage to crane: distance form component to 

crane center at the storage area (m) 

 X8:  Installation to crane: distance from installation 

point to the center of the crane (m) 

 X9:  Crane angle: angular movement of the crane 

(angle between storage and installation in degree) 

 X10:  Crane type: tower crane (X10a) or mobile crane 

(X10b) 

 X11:  Installation type: the component is installed 

among others (X11a) or isolated (X11b) 

 X12:  Location type: exterior (X12a) or interior (X12b) 

 X13:  Reinforcement bars: number of reinforcement 

bars (rebars) to fix the component (for vertical 

elements) 

 X14:  Props: number of diagonal props for temporary 

support of vertical elements 

 X15:  Lifting inserts: number of lifting inserts to be 

attached to the crane hook 

 X16:  Props inserts (holes): number of drills required 

for props installation 

 X17:  Fixing crew size: crew size in charge of PC fixing 

activities  

 X18:  Elevation: elevation of the installation point (m) 

 

Note that in most of the cases, only one signal 

man was in charge of preparation, inspection and pick up 

activities, therefore, the number of preparation crew was 

not considered as a separate factor. 

 

2. RESEARCH METHODOLOGY 

The main objective of this study is to estimate the 

total installation times for different PC elements by using 

ANN. Therefore, installation time will be served as the 

final output of the network. There are two options 

available for considering the network inputs: 

 

a) Consider all of the 18 variables as the inputs and 

develop an ANN to predict the total installation time. 

b) Categorize the variables into 3 groups for each of the 

main activities shown in Figure-4 (these activities are: 

1- Preparation, inspection, and rigging; 2- Lifting; 3- 

Adjustment, fix, and unrigging). As a result 3 smaller 

networks will be developed with grouped variables as 

the inputs and preparation, lifting, and fixing times as 

the network outputs, respectively. In this case, the 

total installation time is the sum of smaller network 

outputs (installation time = preparation time + lifting 

time + fixing time). 
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Our draft analysis showed that option 2 is more 

appropriate for this study. One reason is that the training 

of the smaller networks will be more efficient when 

compared to a bigger network including all of the input 

variables (especially, considering an average sample size 

of this study). Another reason is related to the distribution 

of the collected data from different projects. As an 

example, 65% of the horizontal elements were collected 

from a project that used a crawler crane instead of tower 

crane for lifting purposes. Generally, installations of 

horizontal elements take less time than vertical elements. 

Therefore, if only one network is developed considering 

all of the input factors, the network will be trained in such 

a way that using crawler crane (or mobile crane) results in 

shorter installation time (all other inputs being on average 

values) which is not correct in the actual project settings 

(tower cranes are faster than mobile cranes for lifting 

purposes). In other words, developing smaller networks 

eliminates the bias included in the data collection and 

therefore provides more accurate and valid results.  

Furthermore, based on the observations, the crane 

may not directly return to the storage area right after the 

installation of the previous element due to other lifting 

purposes. As a result, the crane return times were not 

included in the analysis for this research. However, an 

average of 2 minutes can be considered for the crane 

return time (this is based on the collected data). If a more 

accurate estimate is needed, researchers should refer to the 

available literature on crane productivity studies [28,29]. 

 

3.2  Data collection 

The primary data for this study were collected 

from 4 residential and school projects each including 

several blocks of multi-storey buildings using precast 

system in Singapore and Malaysia. To ensure the quality 

and validity of the data, the research team collected the 

primary data through direct observations of 220 PC panels 

and no questionnaires were used for data collection 

purposes. Characteristics of the collected data are shown 

in Table-1. 

 

Table-1. General characteristics of the PC components. 
 

 Wall Column Beam Slab 

No. of cases 76 61 20 63 

Length (m) 1.40 – 5.75 0.40 – 2.00 5.57 – 9.22 2.40 – 8.73 

Width (m) 0.10 – 0.25 0.20 – 0.75 0.30 – 0.80 0.37 – 2.40 

Height (m) 2.80 – 3.58 2.80 – 5.80 0.32 – 0.60 0.07 – 0.27 

Weight (t) 0.95 – 7.31 1.00 – 3.50 2.06 – 5.66 0.80 – 3.09 

 

Elements were installed at different elevations 

between 12.6 m to 68.9 m (level 3 to level 23) which can 

be considered an acceptable range for most of the typical 

construction projects in the region. 

 

3. ANALYSIS, RESULTS, AND DISCUSSIONS 

 

3.1 Selection of the significant factors through multiple 

regression analysis (MRA) 

As mentioned in the research methodology, the 

input factors will be grouped into smaller categories for 

different activities involved in the erection process. 

Variables to be considered for each group are: 

 Preparation, inspection, and rigging: storage type, 

component weight, length, area, height, and number 

of lifting inserts. 

 Lifting (hoisting): distance from storage to crane, 

distance from installation to crane, crane angular 

movement, crane type, component orientation, length, 

area, weight, and elevation of the installation point. 

 Adjustment, fix, and unrigging: component weight, 

length, area, height, location type, installation type, 

fixing crew size, props, props’ inserts (holes required 
to be drilled), and number of lifting inserts (to be 

detached from the crane hook after installation). 

 

Stepwise regression analysis was used to 

determine the most significant factors from the 

abovementioned list for each group of activities. Table-2 

shows summary of the analysis including the selected 

variables (factors with p-value less than 0.05). Out of 220 

elements, 190 of the data points were used for the 

regression analysis and the remaining 30 data points were 

kept for testing purposes (selection of the test data is 

described later). 
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Table-2. Results of stepwise regression analysis. 
 

Variable 

(Preparation) 
B 

Std. 

Error 
Beta t Sig. VIF 

(Constant) -.565 .172  -3.293 .001  

Storage Type 1.062 .100 .662 10.628 .000 1.275 

Length .080 .020 .274 3.982 .000 1.559 

Area .028 .013 .137 2.138 .034 1.351 

Variable (Lift) B Std. Error Beta t Sig. VIF 

(Constant) -1.418 .485  -2.924 .004  

Crane Angle .011 .001 .527 10.647 .000 1.279 

Storage to Crane .024 .008 .246 3.083 .002 3.334 

Orientation -1.155 .128 -.471 -9.034 .000 1.419 

Crane Type 1.856 .186 .775 9.992 .000 3.146 

Elevation .037 .005 .513 7.352 .000 2.544 

Weight .144 .043 .172 3.319 .001 1.397 

Variable (Fix) B Std. Error Beta t Sig. VIF 

(Constant) 3.534 1.033  3.419 .001  

Weight 1.477 .173 .304 8.527 .000 1.187 

Location Type -2.415 .513 -.174 -4.704 .000 1.274 

Holes 1.551 .137 .419 11.322 .000 1.282 

Props 1.780 .166 .391 10.733 .000 1.242 

 

In this Figure ovals and rectangles represent 

resources and activities, respectively. Therefore, for a 

typical erection process, four major activities are as 

follows: 

 

3.3 ANN for PC erection activities 

This section discusses the details about the 

selection of architecture and training of different neural 

networks to be developed for preparation, lifting, and 

fixing activities. In this study, fully connected feed 

forward networks were developed using back propagation 

algorithm (with conjugate gradient method) for training 

purposes.  

A set of 160 data points were randomly selected 

for training, 30 data points for cross validation, and 30 

data points (the same set used in MRA) to test the 

performance of the developed ANN. Use of cross 

validation technique ensures that the network is not over 

trained. In this method the stop criteria is chosen in such a 

way that as soon as the error in the cross validation set 

starts to increase, the training will be stopped. 

Before the training phase, data (inputs and 

output) were scaled using Eq. 2 which transforms the 

actual data to be between 0 and 1.  

 �ܿ��݁݀ ����݁ =  �௡�௖�௟௘ௗ ௩�௟௨௘−௠௜௡.௩�௟௨௘௠��.௩�௟௨௘−௠௜௡.௩�௟௨௘                        (2) 

 

There is no specific rule regarding the 

architecture of ANN (number of hidden layers as well as 

number of neurons in hidden layers) and it is usually 

determined by trial and error. For each of the preparation, 

lifting, and fixing activities, several network architectures 

(containing 1 and 2 hidden layers with sigmoid activation 

function for all of the hidden and output layers) were 

developed and trained for 10,000 epochs. To deal with 

local minima (which is a common problem in back 

propagation algorithm) each of the developed networks 

were redesigned for several times by using different initial 

random weights. Mean Absolute Error (MAE) and Mean 

Square Error (MSE) were calculated using Eq. 3 and Eq. 4 

and the networks with the least MSE were selected as the 

optimal models. 

ܧ��  =  ∑ |��− ��|�� ௡                                                (3) 

ܧ��  =  ∑ ሺ��− ��ሻ2�� ௡                                                (4) 

 

Table-3 shows network architectures, optimal 

models (highlighted in the table), and related errors for 

each of the activities involved in PC erection process. 

Significant factors obtained from stepwise MRA were 

used as the network inputs and network outputs are 

preparation, lifting, and fixing times (in minutes). For 

nominal variables such as storage type (isolated or among 

others), crane type (tower crane or mobile crane), 

orientation (vertical or horizontal), and location type 

(exterior, interior) two input signals are required to 
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represent each of the values respectively. In Table-3, a 4-

10-4-1 architecture represents a network with 4 input 

signals, two hidden layers containing 10 and 4 neurons, 

and 1 output. 

 

Table-3. Selection of optimal models for preparation, lifting, and fixing activities. 
 

Preparation 

Architecture 4-10-1 4-15-1 4-8-4-1 4-10-4-1 4-6-4-1 4-4-1 4-8-1 4-6-1 

MSE 0.549 0.549 0.565 0.568 0.530 0.513 0.520 0.511 

MAE 0.562 0.533 0.558 0.559 0.545 0.540 0.512 0.535 

Lifting 

Architecture 8-15-1 8-12-1 8-10-1 8-12-6-1 8-14-5-1 8-10-5-1 8-13-1 8-12-4-1 

MSE 0.607 0.683 0.556 0.767 0.656 0.668 0.611 0.531 

MAE 0.614 0.598 0.567 0.636 0.593 0.627 0.614 0.565 

Fixing 

Architecture 5-7-1 5-8-1 5-10-1 5-11-1 5-8-4-1 5-9-4-1 5-8-5-1 5-9-1 

MSE 7.086 7.168 8.288 8.745 7.066 7.274 7.231 6.846 

MAE 1.672 1.713 1.996 2.000 1.632 1.661 1.661 1.646 

 

Based on Table-3, the final model to be used for 

total installation times includes architectures of 4-6-1, 8-

12-4-1, and 5-9-1 for preparation, lifting, and fixing 

activities, respectively which are graphically shown in 

Figure-5.  

 

 
 

Figure-5. Graphical representation of the final ANN model. 

 

3.4 Performance of the developed ANN model 

As mentioned earlier, a set of 30 data points was 

used to test the predictive ability of the model. It should be 

noted that during data collection, in each construction 

project, one block was used to collect the test data and 

others for model development. This ensures the 

generalizability of the model and minimizes the need for 

further case studies. This is because conditions in testing 

blocks are different from model blocks. In other words, in 

most of the projects, each block has its own storage area 

with separate tower crane and with different crew who are 

in charge of precast installation. As a result, testing blocks 
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can be treated as separate case studies. Actual installation 

times versus predicted installation times using ANN and 

MRA are shown in Figure-6 and Table-4 shows 

comparison between developed models using ANN and 

MRA. 

 

 

 

 

 

 
 

Figure-6. Comparison of the actual and predicted 

installation times using MRA and ANN. 

 

Figure-7 shows the scatter plot that depicts the regression 

line and equation between actual and predicted installation 

times (using ANN). 

 

 
 

Figure-7. Correlation between actual and predicted installation times using ANN. 

 

Table-4 shows that all of the error estimates as 

well as the error range are smaller in the developed ANN 

model when compared to MRA. Mean Absolute 

Percentage Error (MAPE) was calculated using Eq. 5 

which shows that on average, predicted installation times 

will be only 13.13% higher or lower than the actual 

installation time. In other words, the prediction accuracy 

of the developed ANN model is 86.87% with an average 

of 1.82 minutes error estimate (12.5% reduction in error 

estimate compared to MRA) between the predicted and 

actual installation times. 

ܧ���  = ሺ∑ ͳͲͲ ∗ |��− ��|��  ሻ/�௡௜                                  (5) 

 

Table-4. Comparison of MRA and ANN for productivity estimation of PC installation. 
 

Method MAE MAPE MSE 
Min. abs. 

error 

Max. abs. 

error 

MRA 2.08 14.74 8.86 0.18 9.18 

ANN 1.82 13.13 7.11 0.06 7.22 

 

The results from Figure-7 and Table-4 also shows 

that both ANN and MRA provide well accepted results 

considering high uncertainties involved in construction 

estimations. Therefore, these models can be considered as 

quick and simple tools to be used by estimators for site 

management planning in precast projects. 
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4. CONCLUSIONS 

The main contribution of this research was to 

provide an accurate estimation model to be used by 

construction managers and general estimators to predict 

installation times of different precast elements such as 

walls, columns, beams, and slabs. Therefore, installations 

of 220 precast concrete panels were observed and an ANN 

model was developed containing 3 smaller networks for 

preparation, hoisting, and fixing activities.  Basically, 18 

variables were selected through literature review and site 

visits as influencing factors affecting precast erection 

productivity. Stepwise regression analysis was used to 

identify the significant factors to form the inputs of ANN 

while the main output was the installation time (in 

minutes). Results showed that the prediction ability of the 

model was 86.87% which confirmed the accuracy of the 

model to be used for productivity estimation purposes. 

Although the developed ANN model showed better 

performance when compared to regression analysis, both 

models were well within the accepted range for predicting 

the total installation times of precast components. 

This study used an average sample size for the 

analysis. Therefore, one possible direction for future 

research is to gather more data especially on other precast 

components such as staircases, balconies, etc. and conduct 

case studies to test the model performance. Another 

direction is to develop a computer program based on the 

models described in this study. The program will be 

capable of generating meaningful reports for site managers 

for their scheduling purposes. One issue to be noted is 

that, to predict the installation time for each precast 

element, end users should enter many input data manually. 

One suggestion is to integrate the developed models with 

Building Information Modeling (BIM) packages. Since 

most of the data (including details about precast elements) 

are already available in the BIM systems, manual data 

entry will be minimized. 
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