
 VOL. 11, NO. 17, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10563

IMPROVING PERFORMANCE OF PROGRAM BY FINDING
GOOD OPTIMAL SEQUENCES USING SEQUENCE

SELECTION APPROACH

Praveen Kumar Reddy M.1 and M. Rajasekhara Babu2
1School of Information Technology and Engineering, VIT University, Vellore4, Tamil Nadu, India

2School of Computing Science and Engineering, VIT University, Vellore4, Tamil Nadu, India
E-Mail: praveenkumarreddy@vit.ac.in

ABSTRACT

Compilers have many optimization sequences to be run on a program IR (Intermediate Representation). Applying
all optimization sequence leads to degradation of performance. It needs a best optimization set from optimization sequence
for every program to improve performance. The literature addresses standard universal optimization sequences set derived
from set of program spaces. Retrieving best optimization sequences form this set consumes more time. This paper proposes
a sequence selection approach that reduces time for selecting best optimal sequence set and further it reduces runtime of a
program space. The experimental results showed improved performance on different program spaces in different bench
mark suites.

Keywords: optimal sequence, unoptimal sequences, benchmark suites, intermediate representation, low level virtual machine (LLVM),
sequence selection.

1. INTRODUCTION

Compiler is the main component for any
programming language which is used for converting the
one language to another language. Compilation of any
program has 6 phases [24]. The compiler generates
Intermediate representation (IR) for a program when it is
processed through the syntactic and semantic analysis [3].
The next phase of the compiler is code optimization which
is used to optimize the IR code with respect to parameters
such as memory, run time and power consumption [2].
The optimization phase which consists of many
optimization sequences which are helpful for optimization
of IR code [8]. The optimized code is given as input for
the next phase of the compiler for generating the code for
target system [10]. The execution time and memory of a
program depends on the optimization phase

John Canvazos et al [1] proposed a best machine
learning approach using hardware performance counters
[2] to automatically select the best optimization options. In
recent research, learned- models [4, 5, 6, and 7] are useful
for knowing the optimization sequences of the compiler.
Dynamic compilers can select best optimizations use
logistic regression technique [8]. The optimization
sequence space size grows exponentially as a function of
sequence length. If there are k optimizations, then there are
Kl optimization sequences of length l [7, 8]. An
optimization sequence is optimal for a program if it leads
to smallest program runtime when compared to all other
sequences [7, 6]. This definition is incomplete as the
program runtime and its behavior could be a function of
the input [8, 9]. An optimal sequence for a program
depends on the program characteristics as defined by the
input to the program [12, 13]. A program with different
input distribution and parameters with respect to that input
distribution almost remains constant [11]. Predictive
heuristic technique is an apriori approach to find
optimization sequences. Unpredictable interaction among

optimizations in this technique leads to performance
degradation. Spyridon et al [19] proposed optimization
sequence exploration technique [20, 21, 22, 23] (OSE) as
first iterative compilation model for general purpose
compilers to overcome the problem in predictive
heuristics. Iterative compilation techniques [15] use
efficient algorithms to find good optimization sequences.
In this technique program evaluations are very large and
not feasible to apply in applications. In machine learning
approaches [17] prediction models are used to determine
good optimization sequences. Prediction models learn by
running and observing some set of programs and their
runtimes. It will take decisions on optimizations to be
applied on program space [18]. Thomson.et.al [16]
proposed a clustering approach to cluster training
programs using feature vectors. The best optimization
sequence for a new program space lies at the cluster
centroid [13, 14]. Park et al proposed a technique to select
optimization technique to select optimization sequence
selection using tournament predictors [16]. Suresh purini
et.al[2] used three different benchmark suites are to find
best optimization sets .These techniques used LLVM(low
level virtual machine) test suite[14] where 61 optimization
sequences are present. These programs are also called as
microkernel programs. Microkernel programs have lesser
execution times and consist of programs like searching
and floating Point arithmetic. Iterative compilation
techniques [13] are applied to find near optimal
optimization sequence sets. Finally testing the
effectiveness of this approach using Mibench benchmark
suite [12] and polybench benchmark suite programs shows
an improvement in speedup.

2. CONCEPT

In the existing system compiler optimization
phase has default optimization sequences [2]. The
sequences are applied on a program in sequential manner

 VOL. 11, NO. 17, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10564

which optimizes different sections of the program. These
sequences may wrongly communicate with each other

which may affect the speed up of a program.

Figure-1. Program compilation setup in LLVM.

LLVM [14] (low level virtual machine) compiler
generates machine independent code. Clang [14] is one of
the front-ends supported by llvm. Figure-2 describes the
execution sequence of the program .clang runs the
programs and produces unoptimized Intermediate
representation. In the next phase of compilation clang run
default optimization sequences like O1, O2 and O3 on the
program to produce optimized IR. Finally optimized IR
converted to machine code as bit code file.

3. METHODOLOGY
In the proposed System selection of best

optimization sequences are done for poly-bench
benchmark suite programs. Best set of optimization
sequences are selected based on different program classes.
It uses the sequence selection algorithm to reduce the
optimization sequence set so, that for every program class
there exists at least one optimization sequence set. By
using the clustering algorithm it groups the similar
sequences set. So, this approach reduces the execution
time of a program by select the best optimization sequence
thus increases the speedup of a program.

Figure-2. Program compilation with updated optimization sequences.

Above figure describes the proposed approach
using llvm compiler execution sequence. Optimized IR
produced by clang using default optimization sequences
wrongly interact with each other. These kinds of
interactions cannot give efficient runtimes to programs.
Sequence reduction algorithm is applied on the program
space selects good optimization sequences. These
optimization sequences are given as input to the
optimization phase of the compiler to reduce runtime of
the program.

SEQUENCE SELECTION PSEUDOCODE

hello.c

Unoptimized IR hello.bc

Optimized IR hello.bc

hello.s

Unoptimized Sequence
Optimization Sequence

Clang (using –O0) Opt

Llc (using –O2)

Sequence Updater

 hello.s
hello.bc

Optimized IR

hello.bc

UN Optimized
IR

Optimization Sequence

hello.c Clang (-O0 and
Scalarrepl) Opt Llc (using-O2)

 VOL. 11, NO. 17, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10565

Figure-3. Pseudocode for Sequence Selection.

The above algorithm extracts best optimization
sequences by giving the program and optimization
sequence as input.

Figure-4. The over all system architecture of before and
after optimization sequence set.

4. RESULTS AND ANALYSIS

Default optimization sequence (O1) and best
optimization sequence (O2) applied on the polybenchmark
program by using the VPO tool which gives the execution
time for each program in the program space.
The following

Table-1. illustrates the runtime of default
optimization sequence and best optimization sequence
over the polybenchmark suite.

Table-1. Runtime of default optimization sequence
and best optimization sequence set over the

polybenchmark suite.

Benchmark
programs

Default
optimization

sequence

Best
optimization
sequence set

correlative.c 0.0976 0.097

covarien.c 0.198 0.193

2mm.c 1.8 1.65

3mm.c 4.74 4.5

atax.c 3.46 3.2

cholesky.c 5.36 5.1

doitgen.c 2.15 1.5

gemm.c 2.65 2.35

gemvar.c 6.54 6.14

gesummv.c 4.34 3.29

The following graph illustrates the comparison

between the default and best optimization sequence set
runtime over the polybenchmark suite programs.

 VOL. 11, NO. 17, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10566

Figure-5. Graphical Representation of default and best optimization sequence sets execution time
Over the polybenchmark programs.

The above graph illustrates the compilation time

of each polybech mark program using the default
optimization sequence is less than the compilation time of
each polybench mark program using the best optimization
sequence. From the graph we can say that best
optimization sequence gives better performance than the
default optimization sequence.

Table-2. Speedup for default and best optimization
sequence of polybenchmark programs.

Benchmark
programs

Speedup of
default

optimization
sequence

Speedup of best
optimization

sequence

correlative.c 1.006 1.006

covarien.c 1.009 1.025

2mm.c 0.74 1.09

3mm.c 0.89 1.053

atax.c 0.095 1.0812

cholesky.c 1 1.05

doitgen.c 1.35 1.433

gemm.c 1.015 1.1276

gemvar.c 1.019 1.065

gesummv.c 1.102 1.319

Table-2 demonstrates the speed up of each

benchmark program. Speed up of default optimization and
best optimization sequence of each benchmark program
has been plotted on the graph. Speed up is calculated as
follows.

 (1)

 VOL. 11, NO. 17, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10567

Figure-6. Speedup for default and best optimization sequence over polybenchmark programs.

The above graph illustrates the speedup of each
benchmark programs using the default optimization
sequence is less than the speedup of each benchmark
programs using the best optimization sequence. From the
graph we say that performance of the best optimization
sequence is improved over the default optimization
sequence.

Table-3. Percentage improved for benchmark programs.

Benchmark program Percentage improved

correlative.c 6

covarien.c 2.5

2mm.c 9

3mm.c 5.3

atax.c 8.12

cholesky.c 5

doitgen.c 43.3

gemm.c 12.76

gemvar.c 6.5

gesummv.c 31.9

Table-3 demonstrates the percentage improved

for each polybenchmark program

 VOL. 11, NO. 17, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10568

Figure-7. Performance improvement of best optimization sequence over the default optimization sequence.

 (2)

The above graph illustrates the performance
improvement of benchmark program of best optimization
sequence over the default optimization.

Figure-8. Total execution time of the proposed system.

 VOL. 11, NO. 17, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10569

5. CONCLUSIONS
In this paper we proposed a practical approach to

solve the false interaction between optimization
sequences. This method is quite different from the iterative
compilation and machine learning-based prediction
techniques. The idea is to filter the infinitely large
optimization sequence on a program space using sequence
selection algorithm. Selections of good optimization
sequences set are done in very fast on a particular program
space. Then given a new program we can try all the
sequences from the good sequences set and choose the
best sequence.

ACKNOWLEDGEMENT

The authors would like to thank the School of
Information Technology, VIT University, for giving them
the opportunity to carry out this project and also for
providing them with the requisite resources and
infrastructure for carrying out the research.

REFERENCES

[1] Agakov Bonilla, Cavazos Franke, Fursin Boyle,

Thomson Toussaint, Andwilliams. 2006. Using
machine learning to focus iterative optimization. In
Proceedings of the International Symposium on Code
Generation and Optimization. 15(7): 234-244.

[2] Suresh purini and Lakshya jain. 2013. Finding Good
Optimization Sequences Covering Program Space.
ACM Transactions on Architecture and Code
Optimization. 9(4): 63-68.

[3] W. Orchar-Hays. 2009. The evolution of
Programming System. ACM Transactions on
Programming Languages and Systems. 19: 1053-
1084.

[4] Grigori fursin, John cavazos, Michael o’boyle and
Olivier temam. 2012. Creating the Conditions For A
More Realistic Evaluation of Iterative Optimization.
ACM Transactions on Iterative Optimization. 8(3):
48-54.

[5] 2006. AMD. Compiler usage guidelines for 64-bit
operating systems on amd64 platforms.
http://www.amd.com/usen/assets/content type/white
papers and tech docs/32035.pdf.

[6] Azimi, M. Stumm, and R. W. Wisniewski. 2005.
Online performance analysis by statistical sampling of
microprocessor performance counters. ACM
Transactions on Iterative Optimization. 6(7): 101-110.

[7] C. M. Bishop. 2010. Neural Networks for Pattern
Recognition. Oxford University Press, Oxford, UK.

[8] E. Meijer and J. Gough. Technical overview of the
Common Language Runtime. [Online]. Available:
http://research.microsoft.com/~emeijer/Paper/CLR.pd
f.

[9] J. L. Wilkes and Barthou. 2008. Application of
microprogramming to medium scale computer design.
In: Proceedings of the International Symposium on
Code Generation and Optimization
Microprogramming. 5(4): 87-92.

[10] R. J. Hookway and M. A. Herdeg. 2007. Digital fx!
32: “Combining emulation and binary translation.
Dig. Tech. J. 9(1): 3-12.

[11] Chen, Huang, Eeckhout, Fursin, Peng, Temam. 2009.
Evaluating iterative optimization across 1000 datasets.
In: Proceedings of the 2010 ACM SIGPLAN
conference on Programming Language Design and
Implementation (PLDI ’10). 7(3): 448-4590.

[12] Guthaus, Ringenberg, Ernst, Austin, Mudge, Brown.
Mibench: A free, commercially representative
embedded benchmark suite. In: Proceedings of the
IEEE International Workshop on Workload
Characterization.

[13] M.Boyle. 2009. Finding near optimal sequence using
iterative compilation technique. In Proceedings of the
International Symposium on Code Generation and
Optimization. 5(8): 275-320.

[14] Lattner, Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. In:
Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and
Runtime Optimization (CGO ’04).

[15] Park Kulkarni and Cavazos J. 2011. An evaluation of
different modeling techniques for iterative
compilation. In: Proceedings of the 14th international
conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES ’11). ACM. 5(8): 65-
74.

[16] Thomson Oboyle, M. f. p, Fursin and Franke B. 2009.
Reducing training time in a one-shot machine
learning-based compiler. In: Proceedings of the
International Conference on Language and Compilers
for Parallel Computing. 6(8): 399-407.

[17] Leather Bonilla and Boyle M. 2009. Automatic
feature generation for machine learning based
optimizing compilation. In: Proceedings of the 7th

 VOL. 11, NO. 17, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10570

Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO ’09). 11(4):
81-91.

[18] Michellehribar, Haoqiangjin, Abdulwaheed and
Jerryyan. 2009. A machine learning-based compiler.
In: Proceedings of the International Conference on
Language and Compilers for Parallel Computing.
9(7): 399-407.

[19] Spyridon triantafyllis, Manish vachharajani, Neil
vachharajani, and David i. August 2009. Compiler
Optimization-Space Exploration. In: IEEE ‘09
Proceedings of the International Symposium on Code
Generation and Optimization. 8(15): 340-346.

[20] D. F. Bacon, S. L. Graham and O. J. Sharp. 2008.
Compiler transformations for high-performance
computing. ACM Computing Surveys. 26(4): 345-
420.

[21] T. Kisuki, P. M. W. Knijnenburg, Boyle, F. Bodin and
H. A.G. Wijshoff. 2010. A feasibility study in
iterative compilation. in International Symposium on
High Performance Computing, Vol.7,No.9,pp.121-
132,2010.

[22] F. Bodin, T. Kisuki, P.M. W. Knijnenbsurg, M. F.
P.O. Boyle and E. Rohou. 2011. Iterative compilation
in a non-linear optimization space. In: Proceedings of
the Workshop on Profile and Feedback-Directed
Compilation in Conjunction with the International
Conference on Parallel Architectures and Compilation
Techniques. 4(8): 78-89.

[23] D. L. Whitfield and M. L. Soffa. 2011. An approach
for exploring code improving transformations. ACM
Transactions on Programming Languages and
Systems. 19: 1053-1084.

