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ABSTRACT 

Compilers have many optimization sequences to be run on a program IR (Intermediate Representation). Applying 
all optimization sequence leads to degradation of performance. It needs a best optimization set from optimization sequence 
for every program to improve performance. The literature addresses standard universal optimization sequences set derived 
from set of program spaces. Retrieving best optimization sequences form this set consumes more time. This paper proposes 
a sequence selection approach that reduces time for selecting best optimal sequence set and further it reduces runtime of a 
program space. The experimental results showed improved performance on different program spaces in different bench 
mark suites. 
 
Keywords: optimal sequence, unoptimal sequences, benchmark suites, intermediate representation, low level virtual machine (LLVM), 
sequence selection. 
 
1. INTRODUCTION 

Compiler is the main component for any 
programming language which is used for converting the 
one language to another language. Compilation of any 
program has 6 phases [24]. The compiler generates 
Intermediate representation (IR) for a program when it is 
processed through the syntactic and semantic analysis [3]. 
The next phase of the compiler is code optimization which 
is used to optimize the IR code with respect to parameters 
such as memory, run time and power consumption [2]. 
The optimization phase which consists of many 
optimization sequences which are helpful for optimization 
of IR code [8]. The optimized code is given as input for 
the next phase of the compiler for generating the code for 
target system [10]. The execution time and memory of a 
program depends on the optimization phase 

John Canvazos et al [1] proposed a best machine 
learning approach using hardware performance counters 
[2] to automatically select the best optimization options. In 
recent research, learned- models [4, 5, 6, and 7] are useful 
for knowing the optimization sequences of the compiler. 
Dynamic compilers can select best optimizations use 
logistic regression technique [8]. The optimization 
sequence space size grows exponentially as a function of 
sequence length. If there are k optimizations, then there are 
Kl optimization sequences of length l [7, 8]. An 
optimization sequence is optimal for a program if it leads 
to smallest program runtime when compared to all other 
sequences [7, 6]. This definition is incomplete as the 
program runtime and its behavior could be a function of 
the input [8, 9].  An optimal sequence for a program 
depends on the program characteristics as defined by the 
input to the program [12, 13]. A program with different 
input distribution and parameters with respect to that input 
distribution almost remains constant [11]. Predictive 
heuristic technique is an apriori approach to find 
optimization sequences. Unpredictable interaction among 

optimizations in this technique leads to performance 
degradation. Spyridon et al [19] proposed optimization 
sequence exploration technique [20, 21, 22, 23] (OSE) as 
first iterative compilation model for general purpose 
compilers to overcome the problem in predictive 
heuristics. Iterative compilation techniques [15] use 
efficient algorithms to find good optimization sequences. 
In this technique program evaluations are very large and 
not feasible to apply in applications. In machine learning 
approaches [17] prediction models are used to determine 
good optimization sequences. Prediction models learn by 
running and observing some set of programs and their 
runtimes. It will take decisions on optimizations to be 
applied on program space [18]. Thomson.et.al [16] 
proposed a clustering approach to cluster training 
programs using feature vectors. The best optimization 
sequence for a new program space lies at the cluster 
centroid [13, 14]. Park et al proposed a technique to select 
optimization technique to select optimization sequence 
selection using tournament predictors [16]. Suresh purini 
et.al[2] used three different benchmark suites are to find 
best optimization sets .These techniques used LLVM(low 
level virtual machine) test suite[14] where 61 optimization 
sequences are present. These programs are also called as 
microkernel programs. Microkernel programs have lesser 
execution times and consist of programs like searching 
and floating Point arithmetic. Iterative compilation 
techniques [13] are applied to find near optimal 
optimization sequence sets. Finally testing the 
effectiveness of this approach using Mibench benchmark 
suite [12] and polybench benchmark suite programs shows 
an improvement in speedup. 
 
2. CONCEPT 

In the existing system compiler optimization 
phase has default optimization sequences [2]. The 
sequences are applied on a program in sequential manner 
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which optimizes different sections of the program. These 
sequences may wrongly communicate with each other 

which may affect the speed up of a program. 

 

 
 

Figure-1. Program compilation setup in LLVM. 
 

LLVM [14] (low level virtual machine) compiler 
generates machine independent code. Clang [14] is one of 
the front-ends supported by llvm. Figure-2 describes the 
execution sequence of the program .clang runs the 
programs and produces unoptimized Intermediate 
representation. In the next phase of compilation clang run 
default optimization sequences like O1, O2 and O3 on the 
program to produce optimized IR. Finally optimized IR 
converted to machine code as bit code file. 
 
 
 

3. METHODOLOGY 
In the proposed System selection of best 

optimization sequences are done for poly-bench 
benchmark suite programs. Best set of optimization 
sequences are selected based on different program classes.  
It uses the sequence selection algorithm to reduce the 
optimization sequence set so, that for every program class 
there exists at least one optimization sequence set. By 
using the clustering algorithm it groups the similar 
sequences set. So, this approach reduces the execution 
time of a program by select the best optimization sequence 
thus increases the speedup of a program. 

 

 
 

Figure-2. Program compilation with updated optimization sequences. 
 

Above figure describes the proposed approach 
using llvm compiler execution sequence. Optimized IR 
produced by clang using default optimization sequences 
wrongly interact with each other. These kinds of 
interactions cannot give efficient runtimes to programs. 
Sequence reduction algorithm is applied on the program 
space selects good optimization sequences. These 
optimization sequences are given as input to the 
optimization phase of the compiler to reduce runtime of 
the program. 
 
 

SEQUENCE SELECTION PSEUDOCODE 
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Unoptimized IR hello.bc 
 

Optimized IR hello.bc 

hello.s 

Unoptimized Sequence 
Optimization Sequence 

Clang (using –O0) Opt 

Llc (using –O2) 
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Figure-3. Pseudocode for Sequence Selection. 
 

The above algorithm extracts best optimization 
sequences by giving the program and optimization 
sequence as input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure-4. The over all system architecture of before and 
after optimization sequence set. 

 
4. RESULTS AND ANALYSIS 

Default optimization sequence (O1) and best 
optimization sequence (O2) applied on the polybenchmark 
program by using the VPO tool which gives the execution 
time for each program in the program space. 
The following 

Table-1. illustrates the runtime of default 
optimization sequence and best optimization sequence 
over the polybenchmark suite. 
 

Table-1. Runtime of default optimization sequence 
and best optimization sequence set over the 

polybenchmark suite. 
 

Benchmark 
programs 

Default 
optimization 

sequence 

Best 
optimization 
sequence set 

correlative.c 0.0976 0.097 

covarien.c 0.198 0.193 

2mm.c 1.8 1.65 

3mm.c 4.74 4.5 

atax.c 3.46 3.2 

cholesky.c 5.36 5.1 

doitgen.c 2.15 1.5 

gemm.c 2.65 2.35 

gemvar.c 6.54 6.14 

gesummv.c 4.34 3.29 

 
The following graph illustrates the comparison 

between the default and best optimization sequence set 
runtime over the polybenchmark suite programs.  
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Figure-5. Graphical Representation of default and best optimization sequence sets execution time 
Over the polybenchmark programs. 

 
The above graph illustrates the compilation time 

of each polybech mark program using the default 
optimization sequence is less than the compilation time of 
each polybench mark program using the best optimization 
sequence. From the graph we can say that best 
optimization sequence gives better performance than the 
default optimization sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table-2. Speedup for default and best optimization 
sequence of polybenchmark programs. 

 

Benchmark 
programs 

Speedup of 
default 

optimization 
sequence 

Speedup of best 
optimization 

sequence 

correlative.c 1.006 1.006 

covarien.c 1.009 1.025 

2mm.c 0.74 1.09 

3mm.c 0.89 1.053 

atax.c 0.095 1.0812 

cholesky.c 1 1.05 

doitgen.c 1.35 1.433 

gemm.c 1.015 1.1276 

gemvar.c 1.019 1.065 

gesummv.c 1.102 1.319 

 
Table-2 demonstrates the speed up of each 

benchmark program. Speed up of default optimization and 
best optimization sequence of each benchmark program 
has been plotted on the graph. Speed up is calculated as 
follows. 

  (1) 
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Figure-6. Speedup for default and best optimization sequence over polybenchmark programs. 
 

The above graph illustrates the speedup of each 
benchmark programs using the default optimization 
sequence is less than the speedup of each benchmark 
programs using the best optimization sequence. From the 
graph we say that performance of the best optimization 
sequence is improved over the default optimization 
sequence.    
 
 
 
 
 
 
 
 
 
 
 
 
 

Table-3. Percentage improved for benchmark programs. 
 

Benchmark program Percentage improved 

correlative.c 6 

covarien.c 2.5 

2mm.c 9 

3mm.c 5.3 

atax.c 8.12 

cholesky.c 5 

doitgen.c 43.3 

gemm.c 12.76 

gemvar.c 6.5 

gesummv.c 31.9 

 
Table-3 demonstrates the percentage improved 

for each polybenchmark program 
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Figure-7. Performance improvement of best optimization sequence over the default optimization sequence. 
 

   (2) 
 

The above graph illustrates the performance 
improvement of benchmark program of best optimization 
sequence over the default optimization.  

 

 
 

Figure-8. Total execution time of the proposed system. 
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5. CONCLUSIONS 
In this paper we proposed a practical approach to 

solve the false interaction between optimization   
sequences. This method is quite different from the iterative 
compilation and machine learning-based prediction 
techniques. The idea is to filter the infinitely large 
optimization sequence on a program space using sequence 
selection algorithm. Selections of good optimization 
sequences set are done in very fast on a particular program 
space. Then given a new program we can try all the 
sequences from the good sequences set and choose the 
best sequence. 
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