
 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10742

GENERATING UML CLASS DIAGRAM FROM SOURCE CODES USING
MULTI-THREADING TECHNIQUE

Saif Khalid1 and Rosziati Ibrahim2

1Faculty of Computer Science and Information Technology, Department of Software Engineering, Universiti Tun Hussein Onn Malaysia
2Centre for Research and Development, Office of Research Management, Consulting, Commercialization and Innovation, Universiti Tun

Hussein Onn Malaysia
E-Mail: saif.uthm@yahoo.com

ABSTRACT

Reverse engineering software is the process of moving back of the Software Development Life Cycle (SDLC)
phases by analyzing the software system and then representing it at the higher levels of abstractions. Those processes
generate high level information from the implementation phase, which can support the software understanding activities by
generating several diagrams and specification documents that describe the implemented software. The UML class diagram
represents a valuable source of information even after the delivery of the software. The importance of class diagram comes
from its closeness to implementation phase. Class diagram extraction can be done either from software’s source code, or
from the executable file. This paper proposed approach for extracting a class diagram from the source code. The proposed
approach relies on multi-threading technique in the class diagram extraction which is representing the parallel processing.
The motivation behind using multi-threading technique is that, it gives an advantage of faster processing to any software
because the threads of the program naturally lend themselves to truly concurrent execution. In this paper, a class diagram
extraction using multi-threading technique is designed and implemented using the C# programming language. The
implemented approach is tested on three case studies that contain several types of entities and relationships between them.
Testing results show that the time needed to extract class diagram using multi-threading technique for the tested three cases
is less than the time needed in extracting the same class diagram without using multi-threading technique.

Keywords: reverse engineering, multi-threading, C# source code, UML class diagram.

INTRODUCTION

Reverse engineering is the process of discovering
the technological principles of a device, object or system
through the analysis of its structure, function and operation
(Sommerville, 2007). In order to conduct this process,
software developers must understand the structure or
architecture of the software system. Unfortunately, the
documentation of that particular system is often has never
been written or the person who had developed the system
is no longer employee in the company (Ibrahim and Tiu,
2008). Therefore, explicit knowledge about the particular
system could not be provided.

On the other hand, source code, as mentioned in
(Doan, 2008), is the most important available source to
understand the structure of the system. Therefore, the
ability to reuse source code can be economical for
software engineers; this is because, if some parts of a new
software system can be reused from existing systems,
software developer will save a large amount of money and
effort in developing it (Doan, 2008).

In order to reuse the source code, software
developers must realize the structure and architecture of
the software as well as clearly understanding the
software's features and functions. UML class diagram
describes the structure the software by showing the
software's classes, their attributes, operations and the
relationships among objects (Nagappan, 2008).

Numerous researchers have developed techniques
and tools of reverse engineering from source code to class
diagram such as (Aziz et al., 2013), where they developed
ForUML tool that extracts UML class diagrams from
Fortran code. ForUML is able to produce an XMI

document that describes the UML Class Diagrams.
Another approach is proposed by (Mrinal et al., 2013).
Where they used reverse engineering to generate UML
class diagram from an object oriented system and analysis
of its static behavior by considered java programs. Their
approach able to sketch a method which determines
classes and their attribute, operation and relationship:
generalization, aggregation, association and various kind
of dependencies in form of a simple class diagram that can
be understood by a programmer when inspecting the
source code of a given java programs. While (Jain et al.,
2010) developed a reverse engineering method to
automate the extraction of DFDs, CFDs, and class
diagrams from any legacy C++ code. The extracted
information is classified as structural, behavioural and
constraint rules through which such information can be
produced. In addition, there are also many tools that were
developed for this purpose, such as those mentioned in
(Ibrahim and Tiu, 2008), (Sutton and Maletic, 2007),
(Vinita et al., 2008), (Keschenau, 2006) and (Tonella,
2005). However, none of these researchers have used
multi-threading technique to extract UML class diagram
from the source code. Therefore, we use multi-threading
technique to improve the efficiency of UML class diagram
extracted from source code.

The objectives of this paper work are as follows
(i) To design an approach that generates class diagram
from object-oriented source code using multi-threading
technique. (ii) To implement the proposed approach using
C# programming language. (iii) To test the proposed
approach on C# source code and compare it with

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10743

generating a class diagram without using multi-threading
technique for its efficiency in terms of time.

The main area of concentration is the part of
reverse engineering that is pertaining to generate class
diagrams from source code. The reverse engineering
concept here is explained in terms of the transformation of
object oriented source codes to UML diagrams using the
suggested approach. The application scope of this
approach will be the C# source code only. The main focus
will be on using asynchronous threading. This application
accepts codes that are free from any syntax errors, while
the parser that will be built according to the suggested
approach is limited to extract class diagram but not to
compile the source code. The input will be source code of
C# language and the output will be a UML class diagram.
Four relationships between classes and interfaces will be
extracted: generalizations, realizations, association, and
dependency.

This proposed approach’s aim is to compare the
time needed in generating a class diagram with and
without using the multi-threading technique; hence, this
proposed approach is applied on three case studies to
prove its validity. The three case studies are C# programs
that contain several code files. Each code file contains a
set of classes and interfaces. The time of execution was
calculated for each case study and then listed in the testing
results table.

MULTI-THREADING TECHNIQUE

A thread is the smallest sequence of programmed
instructions that can be managed independently by an
operating system scheduler (Butenhof, 1997). According
to (Justia, 2011), multi-threading is the ability of a
program or an operating system process to manage
multiple requests by the same user without having to have
multiple copies of the programming running on the
computer. Multi-threading paradigm has become
increasingly popular as efforts to further exploit
instruction level parallelism have stalled since the late
1990s (Justia, 2011). This allowed the concept of
throughput computing to re-emerge to prominence from
the more specialized field of transaction processing.

According to (Barnes et al., 2012) the advantage
of a multi-threaded program is that it allows the program
to operate faster on computer systems. This is because the
threads of the program naturally lend themselves to truly
concurrent execution.

GENERATING CLASS DIAGRAM FROM SOURCE
CODE

Through the literature reviews, it can be observed
that there are several stages in generating a class diagram
from the source code of any object oriented programming
languages. These stages rely mainly on text analysis
techniques, hence, generating a class diagram from the
source code needs several processing iterations of the
source code. The first iteration result will be the names of
the code’s main classes and interface. Then, in the second
iteration, the relationship between all classes and
interfaces will be extracted. The final iteration focused on

extracting each class’ attributes and operations. Finally,
after gathering all of this information, a class diagram will
be generated and can be presented as a graph.

Normally, every source code is divided into
several files, with each file containing one or several
classes and interfaces that are related to each other. This is
done in object oriented programming to achieve the
modularity objective. Based on this distribution, a class
diagram extraction is done by individually handling the
files that contain a project code. Files processing
undergoes three main stages, which are (i) extracting
classes and interfaces names, (ii) extracting the
relationships between these classes, and (iii) extracting
class operations and attributes.

PROPOSED METHODOLOGY

The proposed methodology for extracting class
diagram with and without the use of multi-threading
technique consists of several stages that are followed in
order to achieve the objectives listed. The stages are
illustrated in Figure- 2. The first stage is to map code files
into tokens, in which code files are selected from the
project folder, then, all unnecessary symbols are removed,
and finally the results are passed, as tokens to the next
stage. After extracting the tokens from the first stage, and
prior to extract class diagram relationships, there is a need
to extract classes and interface information in order to use
them to extract relationships, these information include
classes and interfaces information, including the names of
classes and interfaces along with classes attributes and
operations. The third stage of this proposed methodology
consists of two parts which works synchronously; the first
part is creating class diagram without the use of multi-
threading technique. This part uses the information from
the first two stages. While the second part is about
generating a class diagram using multi-threading
technique. This part also uses the information obtained
from the first two stages. The result of this stage is a full
class diagram and execution time for each part. The fourth
stage of this proposed methodology is about displaying the
execution time comparison results. The time of execution
is taken from stage 3. Finally, the resulted class diagram
from stage 3 will be visualized using graphics library.

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10744

Figure-1. The proposed methodology stages.

Map code files into tokens

The first stage of the proposed methodology is
illustrated in Figure-3. At the beginning of this stage, a C#
project folder will be selected. A C# project folder
contains several types of files, like ".cs" files which is the
source code files, and ".csproj" files among other types of
files. The processing is only conducted on ".cs" files
because it is the only file type that contains the source
code, while other files are generated by C# IDE to run the
project. After selecting the code files, unnecessary
symbols such as (',' , ';' , ')' , '(' , '<' , '>' , '.' , '+' , '=' , '-' , '/',
'*'), are removed. These symbols are not necessary in
generating a class diagram or extracting classes and
interfaces information. The rest of the code is stored as a
list of string, which is called tokens list. This list is passed
to stage 2 for further processing.

Figure-2. Map code files into tokens.

Extract classes and interfaces information
This stage works on the tokens resulted from

stage 1. Figure-3 shows the details of stage 2. The first
step is to detect the needed keywords out of the tokens
extracted in stage 1. The important keywords are: "class",
"interface", "public", "private", and "protected". When
detecting the keyword "class", it means that the next word
represents a class name, in which the detected class name
is stored in class names list. The same case applies to
keyword "interface". When detecting one of the following
keywords: "public", "private", or "protected", it means that
there is an attribute or operation ahead. The detected
attribute or operation is stored in a special list with an
indicator in its own class. The results of this stage along
with the tokens from stage 1 are passed on to both parts of
stage 3.

Figure-3. Extract classes and interfaces information.

Attributes in C# starts with one of the following
scopes: Public, Private, or Protected. The scope may be
followed by the word Static. After that, the type of
attribute takes a place. It is then followed by attribute
name. Attributes will be represented as:

[Visibility] [static] data_ type attribute_name
[=initial_value];

Operations have similar parts to attribute, with
the difference being that an operation takes several
arguments. Operations will be represented as:

[Visibility] return_ data_ type function_name
([parameter_list])

Visibility of attribute and operations is identified
using Table-1 (MSDN, 2014).

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10745

Table-1. Visibility types.

Keywords Representation Desecration

Public + Visible globally

Private - Not visible outside

Protecte

d

Visible to types
derived

Identifying relationship

The rules for identifying the relationship types
are as follows:

Generalization relationship: Generalization is a
type of relationship where all the derived classes are
specialization of the base class, and all the base classes are
generalizations of derived classes. Generalization can be
detected when the parser finds the keyword “:”, this mean
that the name of the parent class is coming after it and the
name of the child class will be before it. Generalization is
represented in UML by a solid line from the child class to
the parent class, drawn using an unfilled arrowhead.

Dependency relationship: Dependency is a kind
of relationship which states that a change in the
specification in one class may affect another class that
uses it. In the context of class, the dependency relationship
can be identified when one class uses another class as an
argument in the signature of an operation and if the used
class changes, the operation of other class may be affected
as well. Dependency is represented in UML by a dotted
line with an unfilled solid arrowhead between the classes.

Realization relationship: In a realization
relationship, one entity (normally an interface) defines a
set of functionalities as a contract and the other entity
(normally a class) "realizes" the contract by implementing
the functionality defined in the contract. This relation is
between a class and an interface. When the parser match
keyword “:”, this mean that the name of an interface is
coming after it. This relationship is the same as a
generalization, with the difference being in the parent
type. In generalization, the parent is a class, while in
realization the parent is an interface. Realization is
represented in UML by a dotted line with a filled solid
arrowhead.

Association relationship: Association is a type of
HAS_A relationship for whole/part relations. Association
specifies that the object of one class is connected to the
objects of another class. Association is represented in
UML by a solid line between the two classes.

The association relationship also supports several
adornments like: (i) name, (ii) role name, and (iii)
multiplicity. Our tool focuses on multiplicity which is the
number of instances of a class. If the declaration is a single
object, then the multiplicity would be "0..1". While if a
collection of objects is defined in another object, the
multiplicity would be "0... *".

Extract relationships without using multi-threading
technique

This stage is about extracting class diagram
relationship out of the C# source code without using multi-
threading technique with details shown in Figure-5. The
starting point of this stage is the tokens and information
from stage 1 and stage 2. In this stage, code files are
processed sequentially. For each file, a sub class diagram
is generated. The sub class diagram contains the
relationship between the processed file classes and
interfaces with the rest of the selected project classes and
interfaces. Four types of relationships are considered for
each file. Execution time is calculated using a timer which
starts at the beginning of this stage and it is stopped at the
end of the class diagram generation process. Processing
time is taken from this timer after it is stopped. The
generated class diagram and calculated time execution are
passed on to next stages.

Figure-4. Extract relationships without using multi-
threading technique.

The flowchart in Figure-5 describes class diagram

extraction without using the multi-threading technique.
The first step is to extract classes and interfaces names
from all code files. After that, for each files, the

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10746

relationship between the classes and interfaces that this
file contains and the rest of project classes are extracted.
The last step is to extract classes, attributes, and
operations. Finally, a local sub-class diagram is generated.
After finishing this stage, there will be a set of sub-class
diagrams equal to the number of project code files. The
next step will be merging all sub-class diagrams in order
to generate the whole class diagram. By finishing this step,
the class diagram can be visualized.

Figure-5. Flowchart to extract class diagram without
using multi-threading technique.

Extract relationships using multi-threading technique

This stage is similar to stage 3a; the difference is
that the file processing in this stage is done in parallel and
not sequentially as in stage 3a. The parallel processing of
files is carried out using multi-threading technique, which
is detailed in Figure-6. For each code file, a thread is
generated and assigned to process this file. The processing
result is a sub class diagram. When all threads are finished
processing, the resulted sub class diagrams are merged to
generate a full class diagram which represents the whole
project. The processing procedure for each file is the same
as in stage 3a, and the resulting class diagram is similar.
The only difference is the total execution time for this
stage is calculated using a timer which starts when the first
thread starts, and stops when the last thread finishes

processing. This total execution time and the class diagram
are then passed on to the next stages.

Figure-6. Extract relationships using multi-threading
technique.

It can be noticed from this stage that parallel

processing can take place in only one part. The first round
of code file processing should be done without the multi-
threading technique to avoid classes and interfaces name
duplication. So the multi-threading technique can be used
only in classes and interfaces relationship extraction,
which is the second round of code file processing.

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10747

Figure-7. Flowchart to extract class diagram using multi-
threading technique.

In the flowchart shown in Figure-7, the first step

is extraction of classes and interfaces names of code files.
After that, a new thread is generated with file processing
assigned to this new thread for each code file. Thus is
repeated until all code files are assigned to the threads.
Then, the program should wait until all threads have
completed processing the code file and all sub-class
diagrams are ready. The final step will be merging all sub-
class diagrams to generate the class diagram.

Compare the execution time of both techniques

This stage uses the time calculated in stage 3a
and stage 3b. The main aim of this stage is to compare the
execution time of class diagram generation with and
without using multi-threading technique. In order to
measure the time needed in code files processing, a
component called StartWatch is used to start implementing
detect relationship function as start timer. After that, the
component StopWatch is called to stop the timer and
calculate the time taken. These components are provided

by the C# programming language. The details of this stage
are shown in Figure-8.

The time needed to extract relationships of class
diagram without using multi-threading is calculated at the
beginning of stage 3a, where a timer is started and stopped
at the end of the class diagram generation process.
Processing time is taken from this timer after it is stopped.
The generated class diagram and calculated time execution
are then passed on to the next stages.

On the other hand, the time needed to extract
relationships of class diagram using multi-threading is
calculated at the beginning of stage 3b, where the
execution time is calculated using a timer which starts
when the first thread begins, and stops when the last thread
finishes processing. Total execution time and the class
diagram are passed on to the next stages. The final step is
to compare the times that are calculated in the two steps
above and have the results displayed.

Visualize class diagram

This stage is the last stage in this proposed
methodology. The main aim here is to visualize the class
diagram generated in stage 3a and stage 3b. Since both
class diagrams which were generated in stage 3 are
identical, this stage only utilizes one of them. Class
diagram is visualized by using C# graphics library.

COMPARE BOTH TECHNIQUES

Both techniques, which were presented in Figure-
5 and Figure-7 pertaining to class diagram extraction from
OOP source code. These two techniques have the same
core idea, which is analyzing a project code file by file.
This analysis result will become a data structure which
contains: class names, class attributes, class operations,
interface names, relationship between class and interface.
The last step in each technique is to visualize the result
obtained in the analysis phase.

The main difference between both techniques is
in the relationship extraction step; where in one of them
extraction is done by processing one file after another,
which follows the sequential approach. While in the
second, file processing is done using the multi-threading
technique in which files are processed using separate
threads of the process, following the parallel approach.

TOOL IMPLEMENTATION

There are two interfaces for this tool. The main
interface is shown in Figure-8. This interface contains
several buttons and results view labels. A user needs to
select a project folder at the beginning. After that, the
Generate Class Diagram button will be activated. Pressing
the Generate Class Diagram button will invoke the
generating class diagram with and without using the multi-
threading technique. After finishing this step, the View
Class Diagram button will be activated. Pressing this
button will open a new window which contains the class
diagram as a visualized class diagram.

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10748

Figure-8. Tool main interface.

TESTING RESULTS

The developed approach and program testing will
be done on 3 case studies generated just for the purpose of
testing. The testing cases consist of several C# source code
files. In each file there are some class, interface,
relationship between them, class attributes, and class
operations. The implemented program contains two
interfaces: one shows the execution time with and without
multi-threading, the other one is for the class diagram
drawing. The testing procedure that is followed in this
research is based on the generating class diagram for the
three case studies. Testing results are shown in Table-2.

Table-2. Testing results (Time is in ms).

Case
study

Time using
multi-threading

Time without
using multi-threading

1 1.2987 5.8305

2 4.9049 9.4205

3 2.2108 7.6495

As seen from the presented results, the time

needed to extract the class diagram from the source code
of the first case study using the multi-threading technique
is much less than the class diagram extraction from the
same source code without using the multi-threading
technique. The same conclusion applies for the other two
case studies.

From the presented results, it can be said that
using multi-threading in class diagram extraction is more
efficient than extracting class diagram without using this
technique. And simply the bigger the project code the
larger the difference in needed time to extract the class
diagram.

The case study shown in Figure-9 represents a
simple banking system. This case study consists of 6
classes with 4 relations. The class Bank is inherited from
Company, so the relation between them is generalization
relation. There is another generalization relation which is
between class customer and person. Class Bank is
associated with class Bank Account, so the relation
between them is association as shown. Another association
relation appears between class Bank Account and class
Customer.

Figure-9. Case study implementation.

CONCLUSIONS AND FUTURE WORK

This paper contained the proposed approaches of
extracting UML class diagram from source codes using
multi-threading technique and without multi-threading
technique along with related testing for them. The testing
results have shown that using multi-threading technique in
class diagram extraction is more efficient in the aspect of
time than without using multi-threading technique, which
is common with current tools.

There are a few research recommendations can be
considered for future works. Those recommendations can
be considered in order to enhance and improve the
functionalities of the current approach. One is develop an
approach in extracting class diagram using the multi-
threading technique. Unlike the current approach that is
developed in this research, which aims to compare class
diagram extraction with and without using the multi-
threading technique, the future developed approach can
aim to extract class diagram from source codes using the
multi-threading technique. In addition, comparison with
other approaches built within other programming
languages can also be conducted.

Furthermore, this current approach can be applied
to other object oriented programming languages (OOP).
For this research scope, this approach is to be
implemented in the C# language. On the other hand, the
proposed approach can also be extended to work on other
programming languages other than C#, like, Java.

The proposed approach presented the limited
relationships of a class diagram. As mentioned in this
paper, the aim of this research was to compare the class
diagram extraction efficiency with and without multi-
threading. So, it can be observed that this approach can
enhance class diagram extraction by including all of the

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10749

relationships of the class diagram with all possible rules of
code writing.

REFERENCES

Aziz, N., Karla Morris and Salvatore Filippone. 2013.
Extracting UML class diagrams from object-oriented
Fortran: ForUML. Proceedings of the 1st International
Workshop on Software Engineering for High Performance
Computing in Computational Science and Engineering
(SE-HPCCSE '13). ACM, pp 9-16.

Barnes, A., Ryan Fernando, Kasuni Mettananda and
Roshan Ragel. 2012. Improving the Throughput of the
AES Algorithm with Multi core. Processors. Proceeding of
the 7th International Conference on Industrial and
Information Systems (ICIIS). IEEE. pp. 1-6.

Butenhof, D.R. 1997. Programming with POSIX Threads.
1st edition. Boston, USA: Addison-Wesley.

Doan, T. 2008. An evaluation of four reverse engineering
tools for C++ applications. University of Tampere:
Master’s Dissertation.

Ibrahim, R. and Yong, T.K. 2008. ReSeT: Reverse
Engineering System Requirements Tool. World Academy
of Science. 14(4), pp. 238-241.

Jain, A., Sooner, S, and Holkar, A. 2010. Reverse
engineering: Extracting information from C++ code.
Proceedings of the 2nd International Conference on
Software Technology and Engineering (ICSTE). San Juan:
IEEE. pp. 154 -158.

Justia. 2011. Obfuscated hardware multi-threading.
http://patents.justia.com/patent/8621186.

Keschenau, M. 2006. Reverse Engineering of UML
Specifications from Java Programs. Proceedings of the
19th companion annual conference on Object-oriented
programming systems (OOPSLA '04). ACM, pp. 326-327.

Nagappan, S.D. 2008. A reverse engineering uml
modeling tool. University of Malaya: Master’s
Dissertation.

Mrinal Kanti Sarkar, Trijit Chatterjee, Dipta Mukherjee.
2013. Reverse Engineering: An Analysis of Static
Behaviors of Object Oriented Programs by Extracting
UML Class Diagram. International Journal of Advanced
Computer Research, 12(3). pp. 135-141.

MSDN. 2014. Microsoft Corporation.
http://msdn.microsoft.com/en-us/default.aspx.

Sommerville I. 2007. Software Engineering, 8th Edition,
Addison Wesley, England.

Sutton, A. and Maletic, J.I. 2007. Recovering UML class
models from C++: A detailed explanation. Information
and Software Technology. 49(3), pp 212-229.

Tonella, P. 2005. Reverse Engineering of Object Oriented
Code. Proceeding of the. 27th International Conference on
Software Engineering ICSE 2005.IEEE .pp. 724-725.

Vinita, Amita Jain, Devendra K. Tayal. 2008. On reverse
engineering an object-oriented code into UML class
diagrams incorporating extensible mechanisms. ACM
Sigsoft Software Engineering Notes, 33(5). pp. 1-9.

