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ABSTRACT 

In this paper, the application of the method of lines (MOL) to the FKdV equation is presented. The MOL is a 
general technique for solving partial differential equations by typically using finite-difference relationships for the spatial 
derivatives and ordinary differential equations (ODEs) for the time derivative. The MOL approach of the FKdV equation 
led to a system of ODEs. Solution of the system of ODEs was obtained by applying fourth order Runge Kutta (RK4) 
method. In order to show the accuracy of the presented method, the numerical solutions obtained were compared with 
progressive wave solution. 
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INTRODUCTION 

It seems that Patoine and Warn (1982) were the 
first used the forced Korteweg-de Vries (FKdV) equation 
as a physical model equation in the context of the 
interaction of long, quasi-stationary, baroclinic waves with 
topography, given by  
 

 .' xfAAAAA xxxxxt         (1) 

 
where  txA ,  represent the free surface 

displacement from its undisturbed position at time ,t   
represent the long-wave speed,   represent the strenght 

of the nonlinearities, 0  and  xf   represent the 

forcing terms. However, Akylas (1984) was the first 
systematically derived the FKdV equation from the model 
of long nonlinear water waves forced by a moving 
pressure as shown below: 
 

.3)1(696 xxxxxxt pF                     (2) 

 
where  tx,  represent the first order elevation of 

the free surface of the fluid from its equilibrium point ,t . 
Equation (2) is strictly only valid for small disturbances 
and when the Fraud number F  is close to unity and p  is 

forcing term.  
The one-dimensional stationary FKdV equation 

was derived by Shen (1995) as follows: 
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where  txU ,  represent free surface elevation for 

the long nonlinear water waves flowing over long bump, 

0  and h represent the forcing term. Shen (1995) 
proved that the existence of positive solitary wave 
solutions to the equation (3) with boundary conditions 
    .0'  uu  recently, the analytical solution of 

(3) which is a certain form of forcing term has been solved 
by Zhao and Guo (2009) by using Hirota Direct method. 

In literature, weakly nonlinear wave propagation 
in a prestressed fluid-filled stenosed elastic tube filled with 
an inviscid fluid has been studied by applying the 
reductive perturbation method and in the long wave 
approximation (Tay, 2007). By using the stretched 
coordinate of initial-value type and expanding the field 
quantity into the asymptotic series of small parameter, ,
where   is a small parameter, the governing equations are 
reduced to the FKdV equation with the variable 
coefficients, that is,    
 

   τμuτμuμuuμu ξξξξξτ  431       (4) 

 
where   is a spatial variable,   is a temporal 

variable,    ,431 τμ,τμ,μ,μ
 

are the coefficients of 

nonlinearity, dispersion, variable coefficient and forcing 
term respectively. The presence of forcing term  μ , and 

variable coefficient term,    uμ4
show the presence of 

stenosis. The coefficients of    τ μ τμ,μ,μ  and431  are 

defined by (Tay, 2007) as 
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  (5)  

 
where  
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Given that   ,3
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,948.1 ,6.1 z ,1.0m   0τG  and 

   . 010sech τ.τg   Here  refers to material constant,   

is the initial circumferential stretch ratio, z  is the initial 

axial stretch ratio and m  is mass of artery.  
 
The application of the MOL to the FKdV 

equation (4) will be presented in this paper. The MOL 
approach of the FKdV equation led to a system of ODEs.  
Solution of the system was obtained by applying the RK4 
method.  The solution of the FKdV that is obtained using 
the MOL with progressive wave solution conducted by 
(Tay, 2007) will be compared in terms of its maximum 
absolute error at certain time  .  
 
THE METHOD OF LINES 

The MOL is a powerful method used to solve 
partial differential equations (PDEs). It involves making 
an approximation to the spatial derivatives and reducing 
the problem into a system of ODEs (Hall and Watt, 1976;  
Loeb and Schiesser, 1973; Schiesser, 1994).  In addition, 
this system of ODEs can be solved by using time 
integrator. The most important advantage of the MOL 
approach is that it has not only the simplicity of the 
explicit methods (Dehgan, 2006) but also the superiority 
(stability advantage) of the implicit ones unless a poor 
numerical method for solution of ODEs is employed. It is 
possible to achieve higher-order approximations in the 
discretization of spatial derivatives without significant 
increases in the computational complexity. This method 
has wide applicability to physical and chemical systems 
modeled by PDEs. This method has the wide applicability 
to physical and chemical systems modeled by PDEs such 
as delay differential equations (Koto, 2004), two-
dimensional sine-Gordon equation (Bratsos, 2007), the 
Nwogu one-dimensional extended Boussinesq equation 
(Hamdi et al, 2005), the fourth-order Boussinesq equation, 
the fifth-order Kaup–Kupershmidt equation and an 
extended Fifth-Order Korteweg-de Vries (KdV5) equation 
(Saucez et al, 2004). 

In this paper, the spatial derivatives are firstly 
discretized using central finite difference formulae as 
follows: 

 

  





























,
2

22

,
2

,
3

3

2112

11

11

Δξ

uuuu
u

Δξ

uu
u

uuu
u

jjjj
ξξξ

jj
ξ

jjj

     (7)  

 
where   is the spatial variable,   is the temporal 

variable, j  is the index denoting the spatial position along 

axis-  and   is the step size along the axis. The 

interval- is divided into M points with

1,2,..., 1,j M M  . Therefore, the MOL approximation 

of (4) is given by  
 

  

 
 

       .
2

22
2

6

11
4

21123
3

1111
1

jjj

jjjj

jjjjj
j

ufuu

uuuu

uuuuu
u



































                  (8) 

 
Equation (8) is written as an ODE since there is 

only one independent variable, which is .  Also, (8) 
represents a system of M equations of ODEs. The initial 
condition for (8) after discretization is given by 
 
    .,1,...,2,1      ,0, 0 MMjuu jj        (9)  

 
For the time integration, the RK4 method is 

applied. Thus, the numerical solution at time 1i  is 
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where  
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Here  is the step size of the temporal coordinate. 
 
PROGRESSIVE WAVE SOLUTION 

The progressive wave solution of the FKdV 
equation (4) given by (Tay, 2007) is 
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where a is the amplitude of the solitary wave. The phase 
function  can be expressed as 
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RESULTS AND DISCUSSIONS 

To test the MOL on the FKdV equation (4), we 
need the initial condition as follows: 
 

  .5.0
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Figure-1 (a) gives the MOL solution of the FKdV 

equation (4) with spatial parameters at certain time ,  

while Figure-1 (b) represents the progressive wave 
solution of the FKdV equation (4) with spatial parameters 
at certain time  . The solution of the FKdV equation (4) 
with space   shows the solitary waves with the amplitude 

of one unit propagates to the right as time  increases.  
From the observation of Figure-1 (a) and Figure-1 (b), the 
graph of the solution of the FKdV equation (4) using HPM 
is exactly the same graph with the progressive wave 
solution of the FKdV equation (4). 

  

 
(a) the MOL solution   (b) the progressive wave solution 

 

Figure-1. Solution of the FKdV equation versus space   for different time at 01.0 . 

 
We then computed the absolute error between the 

progressive wave and MOL solutions for each discretized 
spatial point at certain time  in order to calculate the 
accuracy of the MOL solution and later find the maximum 
absolute error.  The maximum absolute errors between the 
progressive wave and MOL solutions are calculated based 
on the formula: 

.max MOLeprogressiv UUL                                                 (15) 

 
Table-1 gives the maximum absolute error 

between the progressive wave solution and MOL solution. 
It shows the maximum absolute errors are in 

order of .10 3
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Table-1. Maximum absolute error of the FKdV 
equation for different time at 3  . 

 

Time,   0 3 6 

L  0 3104.7508   3107.2510   
  
CONCLUSIONS 

The MOL was employed to solve the FKdV 
equation was discussed.  It involved replacing the spatial 
derivatives in the PDE with finite-difference 
approximations and by doing that, the spatial derivatives 
became are longer stated explicitly in terms of spatial 
independent variables.  This leads to a system of ODEs.  
The system is then solved by using the RK4 method. 

This paper describes the effect of computational 
effort with respect to the accuracy of results. The MOL 
solution of the FKdV equation (4) is plotted versus its 
progressive wave solution. From the observation, it was 
found that there were no differences for both MOL and 
progressive wave solutions. The maximum absolute errors 
between both MOL and progressive wave solutions at 
certain time  are computed.  Results revealed that the the 

maximum absolute errors are in the order of 310  for 

01.0  and .101 6  Hence, it can be concluded 

that the FKdV equation can be solved successfully using 
the MOL. 
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