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ABSTRACT 

Two-level unreplicated factorial design is very common in manufacturing industries. The design can be used to 
save cost since it usually needs less experimental run. But, problem appears when the experiment is done without any 
replication. In such kind of experiment, there are problems in identifying significant terms as well as to identify possible 
outlier in the data. This article discusses about the use of Pareto plot to identify significant terms for unreplicated two-level 
factorial experiments through numerical example. Meanwhile, the numerical example is also used to clearly describe how 
to create and interpret both Rank Order Outlier (ROO) and iterative ROO plot in identifying possible outlier in the 
experimental data. 
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INTRODUCTION 

In statistics, an observation which is numerically 
different from the rest of the data is called an ‘outlier’. 
Statistical outliers are unusual points in a set of data that 
differ substantially from the rest of the data. An outlier 
could be different from other points with respect to the 
value of one variable or, in multivariate data it could be 
unusual in respect of the combination of values of several 
variables. It occurs when the experiment run in 
environments with many noise variables that will affect 
the result of the experiments.  

Researchers who often run the experiment do not 
possess a suitable methodologies in detecting the outliers 
may have a risk in misinterpreting the result. Outliers have 
influence on the estimation of a model that is being fitted 
to the data. An inaccurate conclusion can be made with the 
presence of outliers. Outliers can be detected by using 
several methods such as statistical approaches, sampling 
methods, graphical methods and others. The advantages of 
using graphical method are easy to understand and 
interpret as well as quick and easy to use and make visual 
sense. 

Especially in an unreplicated two-level factorial 
experiment, situations will be worst when there is an 
outlier in the data since it is also difficult to identify this 
unusual response. Goupy (2006) mentioned few methods 
which are able to resolve this problem. The methods have 
been discussed previously by Goupy (1996) and Hund et 
al. (2002), which are: (i) reconstruction of the 
experimental design, (ii) Daniel diagram, and (iii) 
comparison of measured and calculated responses with 
least square regression. Even the suspected outlier can be 
identified, but there are other complications in data 
analysis. 

In this study, the following questions have been 
set: (1) how is the performance of existing graphical 

methods in detecting outlier? (2) What is the significant 
factor in the experiment? These research questions lead us 
to specify objective of the study, namely to apply the 
graphical methods for detecting outliers in unreplicated 2k 
completely randomized factorial designs based on 
numerical example.  
 
LITERATURE REVIEW 

Outlier has been a topic in statistics field for 
many years. Discussion about outliers includes its effects 
on parameter estimations in regression models, how to 
detect outliers as well as what are the effects in 
experimental designs. In experimental designs, Daniel 
(1960) had discussed how to locate outliers in an 
experimental design. According Daniel (1960), an outlier 
in a factorial experiment is an observation whose value is 
not in the pattern of values produced by the rest of the data 
where the definition has been accepted until today. Bhar 
and Gupta (2001) proposed a new criterion of detecting 
outlier in experimental designs which is based on average 
Cook-statistic. At the same year, Seheult and Tukey 
(2001) discussed about outlier identification and robust 
analysis in factorial experimental design. Meanwhile, 
Zhou and Julie (2003) realized the fact that in practice, 
experiments may yield unusual observations (outliers). 

In general, there are many methods on how to 
identify outliers in the data, both graphical dan numerical 
approaches. There have been few graphical approaches to 
identify outliers in experimental design such as rank order 
outlier (ROO) plot, Daniel plot and Half-Normal plot. 
Recently, Goupy (2006) described how to identify an 
outlier and how to estimate the true value of this outlier in 
a two-level experimental design with at least 16 
experimental runs with no replicates. The method was 
based on the use of a dynamic variable and the ‘‘small 
effects’’ of the Daniel’s diagram.  
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Rank order outlier plot 
 Rank order outlier plot is a simple graphical tool 
that can clearly observe potential outliers through visual 
assessment. We can also detect outliers in ROO plot by 
investigating the inconsistency in the pattern of the plot. 
We create a dataset with the presence of the treatments, 
response value y and the rank order. The rank order need 
to be rearranged in ascending order. According to Sanders 
and Hild (2012), there are four elements to create rank 
order outlier plot, namely:  
 
1. an experimental data with the presence of response 

variable y. The data is then sorted in ascending order, 
from the smallest to largest value of y. 

2. create rank order of each treatment (observation) 
according to the value of y. 

3. identify the most significant effects. This can be done 
through usual Anova or graphical approach. 

4. A plot of the combination of the most significant 
effects with response values on the y-axis and rank 
order against x-axis. 

 
Pareto plot 

We are going to detect outlier by using graphical 
method with SAS software. In order to do that, firstly, we 
need to know which factor is the most significant in the 
experiments; hence, we are going to construct a Pareto 
plot to identify them.  

Pareto plot is a type of plot using the combination 
of bar chart displaying the percentage of categories and 
line graph displaying the cumulative percentage. The bars 
are ordered by frequency in decreasing term, which makes 
Pareto plot useful for deciding the most effective effect or 
what problem should be solved first. Normally the longest 
bar is relatively more significant compared to those shorter 
bars.   
 
Half-normal plot (Daniel plot) 

In a similar way, a disproportionately large 
percentage of errors or defects in any process are usually 
caused by relatively few problems. Pareto plot helps us to 
identify those significant few problems so people can 
target them for an action.  

After knowing the most contributed or significant 
effect from the Pareto plot, we continue further by plotting 
the Half-Normal plot to have a confirmation of the most 
significant effect factors in the experiments. It is a simple 
way to find significant terms as well as to identify 
suspected outliers in an experimental data. The objective is 
similar to Daniel plot (Daniel, 1976). Daniel suggested 
that the examination on a normal probability plot of the 
estimates of the effects should be made. The effects will 
tend to fall along a straight line on this plot, whereas the 
significant effects will not lie on the straight line. The idea 
of plotting normal quantile plot is to compare the value 
from the experiment result with the value predicted to be 
the standard normal distribution.  

The effects that are negligible are normally 
distributed, with mean zero and variance   and will tend 

to fall along a straight line on this pool, whereas 
significant effects will have nonzero means and will not lie 
along the straight line. The Daniel plot of the effect 
estimates is actually based on the use of Lenth's pseudo-
standard error (PSE) to determine the significance of 
effects. 
 
DATA METHODOLOGY 
 
Data 

In this study, we focus on finding significant 
terms of a factorial experiment as well as to identify 
possible outlier in the experimental data. We use an 
artificial data of a 24 unreplicated experimental design (4 
factors and 16 experimental runs) under completely 
randomized design. Let us say that the factors are A, B, C 
and D with 2 levels each (low and high) and the response 
variable is yield. The corresponding rank of the response 
variable is displayed in the last column of Table-1. 
 

Table-1. Artificial experimental design data. 
 

Run 
Factor 

Yield Rank 
A B C D 

1 60 6 60 6 60 6 

2 30 4 30 4 30 4 

3 89 12 89 12 89 12 

4 29 3 29 3 29 3 

5 100 13 100 13 100 13 

6 85 11 85 11 85 11 

7 115 14 115 14 115 14 

8 75 8 75 8 75 8 

9 33 5 33 5 33 5 

10 23 2 23 2 23 2 

11 73 7 73 7 73 7 

12 10 1 10 1 10 1 

13 116 15 116 15 116 15 

14 83 10 83 10 83 10 

15 130 16 130 16 130 16 

16 79 9 79 9 79 9 

 
METHODOLOGY 

Pareto plot to detect the most contribution effects 
will be used. After obtaining the Pareto plot, the most 
contributed effects will be visualized by selecting the 
longest bar in the plot, but, we will recheck the model 
through Half-Normal plot in order to make strong 
evidence showing that the effects displayed in Pareto plot 
is the accurate contribution. After investigating both 
Pareto and Half-Normal plots, the most contributed effect 
as well as suspected outlier can be identified. The step is 
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continued with plotting a ROO plot by choosing response 
variables y as the y-axis and rank order as the x-axis.  

ROO plot will be created by using Minitab for 
identifying strange pattern based on the most contributed 
term to the response variable. Visual assessment can be 
done to detect the outlier in ROO. For the next checking, 
iterative ROO plot will be developed to confirm whether a 
suspected outlier in the previous plot (if any) is obviously 
possible outlier. 
 
RESULTS AND DISCUSSIONS 

Analyzing data from unreplicated factorial 
experiment is not simple. It dues to the fact that when 
there is no replications, the residual error equals to zero 
and calculation of the F statistics is not possible. As the 
result, the significance of each term in the linear model 
cannot be calculated, as it can be seen in Table 2. It creates 
another complication since significant terms cannot be 
identified. 
 

Table-2. Analysis of variance of the artificial 
experimental data. 

 

Source df 
Sum of 
squares 

Mean 
squares 

F p 

Main 
Effects 

4 17968.5 4492.1 *  * 

2-Way 
Interactions 

6 1788.5 298.1 *  * 

3-Way 
Interactions 

4 250.5 62.6 *  * 

4-Way 
Interactions 

1 56.3 56.3 *  * 

Residual 
Error 

0 * *   

Total 15 20063.7    

 
There are 15 terms for the 2k=4 full factorial 

experiment. Those terms are main effects (A, B, C, D), 
two levels interactions (AB, AC, AD,…, CD), three levels 
interactions (ABC, ABD, …, BCD), and ABCD 
interaction. Analyzing the experimental data using Minitab 
produces the following Pareto plot and Table 2 of 
estimated effects of each term. For unreplicated 
experimental design, Minitab uses Lenth’s PSE to 
determine statistically significant factors and we found 
that main effects of C and A as the significant effects. This 
information is also given in the Pareto plot which reveals 
only C and A pass the vertical line of 17.35 as shown in 
Figure-1. There are no interaction terms having significant 
contribution to the yield. In this artificial experimental 
data, visual assessment of the Half-Normal plot (Figure-2) 
reveals that except C and A,  there is no obvious gap that 
would indicate the presence of suspected outliers which 
mean that an initial inspection based on the Half-Normal 
plot provides no indication of an apparent outlier. 
Meanwhile, Table 3 displays the ordered (when the 
absolute values are considered) of estimated effects for the 
artificial experimental data. It informs us that the main 

effect of factor C has highest contribution for the response 
variable with an effect estimate of 54.5. Moreover, since 
the effect is positive, it means that higher value of yield 
can be obtained by setting the factor C at high setting.  
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Figure-1. Pareto plot of estimated effects of the 
numerical example. 

 
Table-3. Ordered estimated effects and coefficients 

of the artificial experimental data. 
 

Term Effect Coefficient 

C 54.50 27.25 

A -37.75 -18.87 

AB -15.75 -7.88 

CD 12.75 6.38 

B 8.75 4.37 

ACD -5.75 -2.88 

BC -5.00 -2.50 

ABC 5.00 2.50 

D -4.50 -2.25 

ABCD 3.75 1.88 

AC 3.00 1.50 

ABD -2.00 -1.00 

AD -1.50 -0.75 

BCD 0.75 0.37 

BD 0.50 0.25 

 
We also display an ROO plot in Figure-3 with the 

Y values are plotted against the rank based on the level of 
C for that treatment. The factor C determines the reference 
distribution of the ROO plot since it has the largest effect. 
The reference distribution is reflected by using cross () 
and minus (+) symbols to indicate the treatments where C 
is at low and high levels, respectively. A quick visual 
assessment on the associated ROO plot indicates that the 
twelfth largest order statistic (rank) which corresponds to 
observation associated with treatment 3, does not fit the 
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pattern of the responses where C was at the high level. 
This value is a possible outlier.  
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Figure-2. Half-Normal plot of the numerical example. 
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Figure-3. ROO plot for the numerical example. 
 

The ROO plot in Figure-4 shows an iterative 
investigation of effect patterns by using the two largest 
effects to determine the reference distribution. As we have 
discussed previously, main effects of factor C and factor A 
give largest and second largest to the response variable so 
that they can be used as the basic to construct an iterative 
ROO plot. Just like in the Figure-3, plus and cross 
symbols are still indicating treatments where C is at high 
and low levels, respectively. Meanwhile, circles and 
squares are used to indicate whether A is at low or high 
settings. Visual assessment in Figure-4 indicates that the 
same observation (no 12) which corresponds to 
experimental run no 3 does not fit with the expected 
pattern of the remaining observations. 

So, observation 12 is possible outlier. But, it is 
not obvious outlier since it is produced by a single 
replication. It informs us that for that particular treatment, 
the pattern is as it was expected. Using ROO and iterative 
ROO plots at least they can help researcher to trace further 
what is happening in the experiment beside factors. 
  

16151413121110987654321

140

120

100

80

60

40

20

0

Rank

Yi
el
d

possible outlier

 
 

Figure-4. Iterative ROO plot for the numerical example. 
 
CONCLUSIONS 

Lenth’s PSE was used to identify significant 
terms in analyzing unreplicated two-level factorial 
experiment since usual analysis of variance is not able to 
do. Meanwhile, through numerical example, it was clearly 
shown how to use ROO and iterative ROO plotsfor 
identifying outlier in unreplicated experimental design. 
We have shown that both ROO and iterative ROO 
plotscan identify the same observation as possible outlier. 
In the future work, the researcher should be able to 
identify outlier in unreplicated factorial design under 
completely randomized design or more complicated 
designs. 
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