
 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10996

 TWO WHEEL SELF-BALANCING VEHICLE USING ARDUINO

Muhammad Ikram Mohd Rashid, Law Choon Chuan and Suliana Ab Ghani
Faculty of Electrical Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia

E-Mail: mikram@ump.edu.my

ABSTRACT

This paper concerns about the implementation of two wheel self-balancing vehicle using Arduino. Tilt angle and
motor speed rate are functioning as input of the system to perform balancing of the vehicle. Inertia Measurement Unit
(I.M.U.) and DC motors were used as sensor and actuator respectively for this system. Moreover, the control of vehicle
system used PID controller and implemented in Arduino board. This project is represents and focuses on power drive
system because it involves a series of power drive and embedded controllers. The hardware of the vehicle is being
produced and tested in laboratory.

Keywords: inertia measurement unit, PID controller, arduino.

INTRODUCTION

Self-balancing two wheel electric vehicle refers
to a type of personal transport that performs balanced
transportation with only two wheels. Typically, balancing
vehicle refers to vehicle that can balance by itself without
assistance of external forces. Though, the statement
mentioned only balancing but not transportation for the
vehicle. As technology era is improving, two wheel
balancing vehicle is now being developed into various
types of self-transportation that not only balance by two
wheels but also support for transportation as well. The
vehicle is developed using inverted pendulum concept
where covers up for both movement and stabilization [1].

Two wheel self-balancing electric vehicle using
Arduino, is a project that studies the characteristic of two
wheel balancing vehicle while construct an algorithm that
links between microcontroller, balancing sensor and
acceleration sensor to perform a self-balancing two wheel
electric vehicle that covers functions for balance
transportation.

DESIGN BACKGROUND

There are many types of two wheel balancing
robot being introduced in the market, modeling are mostly
various depend on personal criteria on personal
transporter. Modeling mostly refers to Segway liked
personal transport that was the first and based design for
first prototype of two wheel balancing vehicle. Typical
two wheel balancing vehicle is made up of base with two
parallel positioned wheels on both left and right side while
a steer functioned rod is positioned at forward front part of
the base, enabling directional controller for end user to
determine rotation angle.

Figure-1 illustrates the modeling of two wheel
balancing vehicle where the structure clearly indicates that
initial position of the modeling is unstable. Positioning of
two round shaped wheel at the base of the vehicle was
purposed to enable motion to structure so that tuning can
be made when the vehicle is out of balance. By referring
to [1], [2] and [3] case study, it showed that modeling
generations are mostly refers to Lagrange equation
regardless of axis.

Figure-1. Modeling of two wheel balancing vehicle.

By referring to Figure-1, it can be explained that

trajectory of balancing only refers to the tilting of x-z axis
and the anti-trajectory concept to balance the vehicle back.
It can be simplified that when the vehicle is tilting
forward, an oppose force to counter tilt angle is needed so
that vehicle can be maintain in balance condition.

As shown in Figure-2, it displayed the movement of
vehicle when vehicle traces tilt angles from sensor. When
the vehicle is tilt forward, vehicle will move forward with
a tuning speed in order to keep balance tilt forward. The
same condition goes to tilt backward condition with a
balance tilt backward motor rotation. During stationary
condition, there will not be having movement but just
static balancing on the spot until tilt angle is traced. These
trajectories acceleration will remain as the sensor is
sending signal to microcontroller and motor is react to
changes of sensor values leading to a smooth graceful
balancing acceleration with a proper feedback controller.
As mentioned in [6], trajectories continuous movements
with boundaries are consider as graceful where it leads to
smooth actuation.

Figure-2. Trajectory of vehicle movement against tilt

angle.

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10997

SIMULATION RESULTS
The prototype is simulated based on the wiring

connection as depicted in Figure-3 and the functions of
system block is illustrated in Figure-4.

Figure-3. Complete circuit connection.

Figure-4. Overall system block diagram.

Raw program results are being tested before the
complete connection is made. These results indicates the
values of readings calibrated when sensor is twisted in 0°,
90°, 180° and -90°. From Figure-5, it shows that sensor is
being placed at 0° with acceleration in x-axis for 1 to 2,
while acceleration in z-axis is in 103 where positive
gravity force facing down. For gyro y, since there is no
rotation beyond the axis, so the value will be around 0 to
1.

Figure-5. Axis acceleration for 0°.

When IMU is tilted at 90°, the result is changing as in
Figure-6. Acceleration in x-axis changed to range in
between 103 to 105. Meanwhile, acceleration in z-axis
have deducted into half due to changes in gravitational
force. The value stated in this state is around 0 to 3. Gyro

in y-axis remained the same due to no actual rotation for
the axis.

Figure-6. Axis acceleration for 90°.

Once again the tilt angle is twisted, and this time the
value changes again. From Figure-7, it shows that
acceleration in x-axis increased to range in between -4 to -
8. Due to reversal gravitational force, acceleration in z-
axis changed into negative values in the range between -95
to -97. In this tilt angle, y-axis remained unchanged.

Figure-7. Axis acceleration for 180°.

For the last turn, the IMU now state in -90°,
where acceleration values in x-axis drops down
somewhere around range within -99 to -100. For this
condition z-axis acceleration changed back to positive
values indicating the values of 13 to 15. As well as others,
gyro in axis-y remained unchanged. The data collected is
well described in Figure-8.

Figure-8. Axis acceleration for -90°.

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10998

Upon hardware completion, program is tuned
with real actual hardware testing. Since angle acquisition
is completed within program, the next important part is the
tuning of PID for motor response. As stated earlier, the
project lacks of parameter in generating linear functions
for motor control equations. Hence, the tuning method has
to be done by using manual method. For the first test,
gain for all parameters is set to 0 while overall control gain
is set to 1. A free drop test is performed and the result is
being plotted in Figure-9. From the response, it is clearly
seen that motor response is not fast enough to change of
angle. From results, it showed that motor speed start to
response when angle change reaches 3 degree at 11
milliseconds. The data indicates that motor is delayed 11
milliseconds to react for angle changes which are consider
slow response compare to desired response. The whole
balance response took 121 milliseconds to complete and
might cause driver to drop off from the vehicle. So a
tuning must be increased in PID controller so that motor is
fast enough to response to angle change of vehicle.

Figure-9. Balancing response plot upon free fall.

First, proportional gain is tuned first. By
expecting 30 percent value from set point, the first tuning
data was start with P=9, I=0 and D=0. Though, PID
tuning was not as easy as seen, multiple tries had been
tested on P values where oscillation does happened but
does not smooth enough to perform self-balance. After
trying with P=4.5, P=2.25 and P=3.375, the last results
showed balance response that is consider satisfying.
According to manual tuning method, the next tuning
parameter is Integral gain which it reduces overshoot of
motor response. As manual tuning method does, the
tuning of Integral gain starts from I=0.1 with an increment
of 0.05 for each test. The final satisfying results is the
value of 0.5 where the vehicle is able to balance with less
overshoot and more stable. For the last parameter test, the
method is same as Integral gain tuning where Derivatives
gain works in damping the response of oscillation towards
change of angle. The Derivative gain finalize is 2.5 and
finally the whole program will need to tuned with overall
gain in order to archive complete response of PID. For
this part, the final tuned overall gain is 1.5 where the
controller acts to perform balance with the vehicle but
with some gaggling motions when driver rides. Figure-11
illustrates the plots of balancing response upon free fall
after PID tuning. When comparison of Figure-9 and 10 is

made, it is clearly shown that the response apparently
improves by the response time of motor speed towards
angle changes. The response start since there is angle
changes and response to balance for one cycle within 81
milliseconds. Compared to Figure-9, response of Figure-
10 is more desirable and effective by the sensitivity of
response and speed.

Figure-10. Balancing response plot upon free fall (PID).

After PID was tuned, balancing response was
tested under angle limitation where vehicle will stop to
response once acting angle is over the set angle. By refer
to Figure-11, a plot was done by limiting acting angle of
balancing response and speed response was monitored. It
is showed that upon increment of angle over 20 degrees,
motor will stop react causing stop to vehicle and indicates
driver that the tilt angle is not secured.

Figure-11. Balancing response plot exceeds set acting
angle.

Tuning of PID gains in the program was

satisfying but was not the best. It is able to balance driver
while riding on it but the shagging of balance process does
not comforts drivers to ride on it. After the vehicle was
able to balance, comparisons are made with real market
product so that prototype is being proved compact. By
compare to Segway i2, a commercialized product, the
specifications can be seen through Table-1. The prototype
specification, are smaller and lighter compare to real
products, so the compact design objective was achieved.

 VOL. 11, NO. 18, SEPTEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10999

Table-1. Prototype of Segway i2.

CONCLUSIONS
Development of Self Balancing Two Wheel

Electric Vehicle using Arduino is a new approach for the
personal transporter. Besides from transport human as
loads, the vehicle also designed with compact and lighter
weight that consumes less space and energy to carry.
Movement of the vehicle resolves balancing terms that is
static with a moveable balancing vehicle that is able to
carry driver with the algorithm of combining Kalman
Filter and PID controller. In terms of short moving
distances, having a two wheel self-balancing vehicle does
supports travel within short distances as it does not
consume energy and eco-friendly. Meanwhile, the cost of
production is considered low compared to real actual
product.

As a conclusion, the development of this project
is managed to achieve all objectives. The implementation
of this low cost self-balancing vehicle is encouraged
where it leads to eco-friendly by the battery used without
harming environment and able to own by everyone with a
smaller compact sized vehicle.

REFERENCES

[1] Petrov, P. and Parent M. (2010). Dynamic Modeling

and Adaptive Motion Control of a Two Wheeled Self
Balancing Vehicle for Personal Transport. 13th
International IEEE Annual Conference on Intelligent
Transportation Systems.

[2] B. He, W.Z. Liu and H.F Lv (2010).The Kinematics
Model of a Two-wheeled Self-balancing Autonomous
Mobile Robot and Its Simulation. Second
International Conference on Computer Engineering
and Application.

[3] H.S. Juang and K.Y. Lum (2013).Design and Control
of a Two-Wheel Self-Balancing Robot using the
Arduino Microcontroller Board. 10th IEEE
International Conference on Control and Automation
(ICCA).

[4] J. Wu and W. Zhang (2011).Design of Fuzzy Logic
Controller for Two-wheeled Self-balancing Robot.
The 6th International Forum on Strategic Technology.

[5] S. Miasa, M. Al-Mjali et al. (2010).Fuzzy Control of a
Two-Wheel Balancing Robot using DSPIC.7th
International Multi-Conference on System, Signal and
Devices.

[6] U. Nagarajan (2013).Fast and Graceful Balancing
Mobile Robots.ProQuest LLC.

[7] P.T. Chen (2010).Simulation and Optimization of a
Two-Wheeled, Ball-Flinging Robot”, ProQuest LLC.

[8] A. Salerno (2006).Design, Dynamics and Control of a

Fast Two-Wheeled Quasiholonomic Robot.Library
and Archives Canada.

[9] Starlino (2013).Arduino Code for IMU Guide
Algorithm. Retrieved from http://www. starlino. com/
imu_ kalman_arduino.html

[10] Kas (2013). Balancing Robot for Dummies. Retrieved
from http://www.x firm.com/?page_id=145

[11] S.Colton (2013).The Balance Filter. Retrieved from
http://web.mit. edu/ scolton/ www/ filter.pdf

[12] Alegiaco (2013).Kalman Filter vs Complementary
Filter. Retrieved from http:// lets make robots.
com/node/29121

[13] Sensor and Sensing (2013). Retrieved from http:// cs.
brown. edu/~ tld/ courses/ cs148 / 02/sensors.html

[14] Introduction to AI (2013). Retrieved from http://
www. ru.is/ faculty /thorisson /courses
/v2008/gervigreind/FuzzyLogic.html

[15] Kalman Filtering of IMU Data (2013) .Retrieved from
http:// tom. pycke. be/ mav/ 71/ kalman-filtering-of-
imu-data

