
 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11317

MODELS AND CROSS-PLATFORM WEB APPLICATIONS FOR
OBJECT MODEL STORAGE

Oleg Jakovlevich Kravets1, Evgeny Vasil’evich Shvedov1, Vasiliy Sergeevich Kireev2, Yurii Borisovich

Mindlin3 and Munavir Zakievich Zakirov4
1Voronezh State Technical University, Moscow ave., Voronezh, Russian Federation

2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) Kashirskoe highway, Moscow,
Russian Federation

3Moscow State University of Mechanical Engineering, Bolshaya Semenovskaya str., Moscow, Russian Federation
4Institute of Management, Economics and Innovatsy Str. Big Dmitrovka, Moscow, Russian Federation

E-Mail: rusciense@mail.ru

ABSTRACT

The description of the cross-platform web application providing users with the flexible tool for storage of an
object model of arbitrary data domain for the purpose of operational formation of controls loading of multi server systems
on the basis of scalable Markov processes is provided. The three-level client-server architecture is the cornerstone of
system. In it loading is distributed between the service provider called by the server and the customers of services called by
clients. In operation ORM a framework of Eclipse Link which is reference implementation of the Java Persistence API
(JPA) specifications which were included in Java EE is used. Traditional approach with creation of classes’ entities for
each specific type of objects isn't suitable for creation of a data model which would allow keeping objects of arbitrary data
domain as neither object types, nor their parameters are in advance unknown. The meta model which describes each object
the set of attributes inherent in specific object type, and values for these attributes is developed for the solution of this task.
Such approach to the description of objects allows storing arbitrary object model, using a limited set of classes’ entities.
The layer of business logic of application is realized by means of JSF Managed Beans or bins - Java of classes which are
under control of a container framework (Java EE application server). JSF components of the presentation layer can get
directly access to fields and methods. The layer of representation is realized by means of Java Server Faces (JSF) - a
platform for creation of the user interface of the web applications written in the Java language and library the Prime Faces
5.2 JSF component.

Keywords: cross-platform web application, flexible tool, storage of an object model, multi server systems, a framework of eclipse link,
meta model, arbitrary object model, JSF managed beans.

1. INTRODUCTION

The description of the cross-platform web
application providing users with the flexible tool for
storage of an object model of arbitrary data domain for the
purpose of operational formation of controls loading of
multiserver systems on the basis of scalable Markov
processes [4, 6, 10] is provided.

According to an objective the chart of options of use
of application is made. In system there are two roles - the
administrator and the user. The user has an opportunity to
view the objects existing in system, to create new objects,
to delete objects, to change parameter values of specific
object. The administrator, in addition to opportunities
which are available to the user can make different
operations with a meta model and accounting entries of
users, namely:
 to view information on object types and attributes;

 to create new object types;

 to delete object types;

 to create new attributes for each object type;

 to delete attributes;

 to modify attributes;

 to view information on users of system;

 to create new users;

 to delete users.

2. GENERAL ARCHITECTURE OF APPLICATION
Variety of client-server architecture, namely

three-level architecture client-server [1] is the cornerstone
of the developed system. In it loading is distributed
between the service provider called by the server and the
customers of services called by clients.
Advantages of this architecture are:
 absence of duplicating of a program code of the server

by clients;

 lowering of the hardware requirements to clients in
view of the fact that computation is made on the
server;

 absence of need of distribution of updates to clients;

 information storage is carried out on the server,
protection against which illegal access is much higher,
than at most of clients;

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11318

 on the server it is much easier to provide demarcation
of access rights to information.

 It is possible to carry to shortcomings of this approach
[2, 5]:

 need of the qualified support for system operation
support [8];

 failure of the server leads to an application non
service ability at all users;

 high cost of the equipment.

The modern corporate environment requires a
possibility of scaling [3, 5], a modularity and high speed
of development of complex code therefore in this project
the three-level (three-unit) architectural model of
application will be used. Such model assumes existence in
system of three components.

a) The client (the client's layer) - interface, most
often graphic, part of system which is provided to the
ultimate user. This level shan't comprise business logic,
except the elementary things, like check of the value
entered by the user on validity, to store application state or
to have direct access to the database.

b) An application server (an average, binding
layer) - the main part of business logic is concentrated on
it. This layer is projected so that to provide horizontal
scaling of productivity in case of increase in number of
copies without modification of a program code.

c) The layer of data - realizes data storage [11].
Implementation is made by means of different database
management systems.

Use of such architecture allows achieving the best
scalability best for configurability (due to isolation of
layers of application) and ampler opportunities on data
security provision and fail safety.

3. LAYER OF DATA ACCESS

In the application developed using object-
oriented programming languages, the task of storage of
objects is consolidated to conversion them to a look in
which they can be saved in tables of the database and to
derive afterwards from there, having saved both
parameters of objects, and the relations in between. Such
objects are called persistent.

For the solution of the task of storage
programmers need to write the software which can work
data full in an object-oriented look and save them in the
relational form. Need to permanently transform data from
one form to another creates difficulties when
programming, is a source of a large number of errors [9].

To avoid the difficulties given above, different
models [7], libraries of object and relational display (ORM
library) which relieve the programmer of need of writing
of a code for conversion of objects from one form in
another are developed.

In operation ORM a framework of EclipseLink
which is reference implementation of the Java Persistence
API (JPA) specifications which were included in Java EE,
starting with the fifth version is used.

3.1. Storable classes entities of the developed system

Traditional approach with creation of classes
entities for each specific type of objects isn't suitable for
creation of a data model which would allow to keep
objects of arbitrary data domain as neither object types,
nor their parameters are in advance unknown. The meta
model which describes each object the set of attributes
inherent in specific object type, and values for these
attributes was developed for the solution of this task. Such
approach to the description of objects allows to store
arbitrary object model, using a limited set of classes
entities.

Root element of this hierarchy is the abstract
class "Object of a meta model" – Meta Model Object. It
contains the id field of the Big Integer type which is a
unique identifier of object in system and is generated by
JPA when saving object in the database. At this class the
equals method of the class Object which compares objects
on their actual class and the identifier is redefined.

The class "Object Type" is model of the object
types used in system and contains the ancestor field -
parent which is the link to object ancestor of the class
Object Type, the name string field - name and the
attributes field - attributes of the List <attribute> type
which contains the attribute list of this object type.

The class "Attribute" contains the type field -
type of the class "Attribute Type" – Attribute Type, the
name string field - name, the "link type" field – reference
Type which contains object type to which objects this
attribute can refer if it is referential. Also in this class there
is a list Entries field of the List <list entry> type which
contains a set of possible string values if the attribute is
list-oriented and the logical multiple field - multiple
showing is attribute multiple.

Listing "Attribute type" contains a set of possible
types of attributes, namely: "TEXT" for text and
numerical, "DATE" for dates, "REFERENCE" for links to
other objects and "LIST" for list-oriented attributes.
The class "Entry in the List" – List Entry contains the
value of record string field – entry Value in which value of
list-oriented attribute is stored.

The class "Object entity" – Entity Object is the
entity modeling object in system. This class has a name
string field - name in which the object name, the
description string field - description for storage of the
description, the "object type" field – object Type which
contains object type and the parameters field - parameters
like "Map <attribute, parameter="">", serving for storage
of parameter values for each attribute belonging to this
object type is stored.

The class "Parameter" - Parameter contains the
"parameter values" field – param Values of the List
<parameter value> type containing the list of values of
this parameter.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11319

The abstract class "Parameter value" – Parameter
Value contains the abstract generalized get Value method
() which serves for receiving a parameter value and is
realized in all successors of this class: "String value" –
String Value, "Date" – Date Value, "Link" – Reference
Value and "List-oriented value" – List Value.

Each class given above is controlled (managed)
entity (Entity) of JPA which is connected to the database.
JPA traces a status of controlled entities, fixes their
changes in the database in case of completion of
transaction and loads fields and communications of
managed objects at the request of application.

3.2. Database structure

The database of the developed application shall
provide storage of classes entities and information on
users of system.

The database structure developed for storage of a
meta model contains 8 tables and is provided in a Figure-
1.

Figure-1. Database structure.

We will consider in more detail each table and its
assignment.

The table "Objects entity" (entity objects) serves
for storage of objects of system. It is connected to the
tables "Object Types", "Parameters", "Parameter values".
Fields of the Table "Objects entity" are provided in Table-
1.

Table-1. Table DB "Objects entity".

Field Role Type Size

object_id Object ID Counter
Long

integer

name Name Text 100

description Description Text 1000

object_type_id
Identifier
of object

type
Numerical

Long
integer

The table "Object Types" (object types) serves

for storage of object types of system. It is connected to the
table "Attributes". Fields of the table "Object Types" are
provided in Table-2.

Table 2. DB "Object types".

Field Role Type Size

object_type_id
Identifier

of the
object

Counter
Long

integer

name Name Text 100

parent_type_id

Identifier
of object

type
ancestor

Numeric
al

Long
integer

The table "Attributes" (attributes) serves for

storage of attributes. It is connected to the table "Object
Types", "Parameters", "List-oriented Values". Fields of the
table "Attributes" are provided in Table-3.

Table-3. DB "Attributes".

Field Role Type Size

attribute_id
Attribute
identifier

Counter
Long

integer

name Name Text 100

attr_type
Attribute

type
Numerical Integer

reference_type_id

Object type
to which

this
attribute
can refer

Numerical
Long

integer

object_type_id

Object type
to which
attribute
belongs

Numerical
Long

integer

is multiple
whether Is
multiple

Boolean

order number
Sequence
number

Numerical Integer

The table "Parameters" (parameters) serves for

storage of parameters. It is connected to the table

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11320

"Attributes", "Object Types" and "Parameter values".
Fields of the table "Parameters" are provided in Table-4.

Table-4. DB "Parameters".

Field Role Type Size

parameter_id
Parameter
identifier

Counter
Long

integer

attribute_id
Attribute
identifier

Numerical
Long

integer

object_id
Object

identifier
Numerical

Long
integer

The table "Parameter values" (parameter values)

serves for storage of parameter values. It is connected to
the table "Objects Entity", "Parameters", "List-oriented
Values". Fields of the table "Parameter values" are
provided in Table-5.

Table-5. DB "Parameter values".

Field Role Type Size

value_id
Identifier

of the
Counter

Counter Long integer

parameter_id
Identifier

of
parameter

Numerical Long integer

type
Whole
Type

Numerical Integer

string_value String Text 500

date_value Date Date

reference_id Object ID Numerical Long integer

list_entry_id

Identifier
of list-

oriented
value

Numerical Long integer

order number
Sequence
number

Numerical Integer

The Table "List-oriented Values" (list entries)

serves for storage of list-oriented values. It is connected to
the table "Attributes" and "Parameter values". Fields of the
table "List-oriented Values" are provided in Table-6.

Table-6. DB "List-oriented values".

Field Role Type Size

list_entry_id

Identifier of
the list-
oriented

value

Counter
Long

integer

attribute_id
Identifier of

attribute
Numerical

Long
integer

entry_value Value Text 100

order number
Sequence
number

Numerical Integer

These tables provide storage of a meta model in
the database. In addition to them in system 2 plane tables
for information storage about users of the application are
used.

The table "Users" (users) serves for data storage
about users. It is connected to the table "Roles". Fields of
the table users are provided in Table-7.

Table-7. DB "Users".

Field Role Type Size

user_id User id Counter
Long

integer

username Login Text 100

user_first_name
First
name

Text 50

user_last_name
Last
name

Text 50

user_role Role Numerical
Long

integer

password Password Text 255

email Email Text 100

The table "User Roles" (user_roles) serves for

data storage about roles of users. Fields of the table "User
Roles" are provided in Table-8.

Table-8. DB "User roles".

Field Role Type Size

role_id
Role

Identifier
Counter

Long
integer

name Name Text 255

3.3. A data model for operation with storable classes
 entities

Features of implementation of Java Persistence
API impose restrictions for operation with classes entities.

Life cycle of entity of JPA consists of 4 statuses:
new/transient (new), managed (controlled), removed
(remote) and detached (unfixed). At the same time in each
time point the entity can be only in one of them. In a
Figure-2 life cycle of JPA entity and transitions between
statuses is provided.

Figure-2. Life cycle of entity.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11321

Set of the entities which are in a controlled status
(managed) make a so-called context of saving (Persistence
Context). He acts only within one transaction then all
entities which are contained in it pass into the unfixed
status (detached). In this status the entity can have not
loaded fields if they are marked as loaded upon the
demand of (fetch = with LAZY). Also JPA doesn't
monitor change of the entities which are in the unfixed
status, and, therefore, such changes won't be recorded in
the database.

In the meta model developed for this application
loading of fields on demand for abbreviation of consuming
of memory and the data volume circulating between a DB
and application widely is used. Therefore in order to avoid
problems with receiving the field values loaded on
demand at the entities which are in the unfixed status the
decision to use additional model and a set of services for
conversion of this model to controlled entities of JPA is
made. Such decision will allow to have an idea of entity
with a set of parameters necessary at present, without
transferring excess information on the client. Need of
these or those data is generally dictated by the presentation
layer and depends on what information is required for
display.

The class diagram of the developed model is
given in a Figure-3.

Figure-3. Class diagram of model.

Each class of this model serves for information
transfer on the presentation layer and considers need for
specific information for certain elements and pages of the
web application. For example, the class
"HierarchicalObjectTypeModel" serves for creation of a
tree of object types. In this context we need to know the
identifier of object type, his name and the ancestor, but
information on attributes isn't necessary. In case of a
choice in a tree of any element, it is necessary to provide
information output about attributes, and the class
successor "Hierarchical Object Type With Attributes
Model " which has necessary data for this purpose is
already used. Proceeding from the same reasons, also
remaining classes of model were designed.

Work is carried out with classes entities in special
services. Their methods work in transactions that
guarantees finding of entities in a controlled status and
correct operation of loading of fields on demand. These
services accept and the objects of model used at the
business logic layers and representations return.

The following services were developed for use in
system:

 Object Types Service for operation with object types;

 Attribute Service for operation with attributes;

 Parameters Service for operation with parameters;

 Parameter Values Service for operation with
parameter values;

 Objects Service for operation with objects;

 User Service for operation with accounting entries of
users.

 Services realize the following functionality:

 creation of controlled entities on model;

 receiving models on the entity identifier;

 modification of entity according to model.

4. BUSINESS LOGIC LAYER
The business logic is a rule set of behavior of

entities of a certain data domain. The layer of business
logic of application is realized by means of JSF Managed
Beans or bins - Java of classes which are under control of
a container framework (Java EE application server). JSF
components of the presentation layer can get directly
access to fields and methods of a bin. Most often JSF
Managed Beans are used for such purposes as:

 verification of the data entered into a JSF component;

 event handling of a component;

 determination of the page to which application shall
transfer.

 The application server controls life cycle of a bin, and
each bin has one of the following areas of existence:

 application scope - a copy of a bin exists throughout
operation of application;

 request scope - a copy is instantiated when receiving
request from the client and destroyed after sending the
response;

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11322

 session scope - a copy exists throughout session of the
user;

 view scope-a copy is created in case of the addressing
the page and exists until the user on it is.

We will consider the organization of a layer of
business logic on the example of the class which is
responsible for operation of a panel of the administrator.

This class is a wrapper over two other managed
classes which are responsible for display of a tree of object
types – Object Types Tree Bean and information on
attributes of object type – Object Type View Bean. Such
approach is caused need of processing of an event of a
choice of object type for a tree both for him, and for the
class which is responsible for display of attributes. The
wrapper receives the event notification and causes
methods processors in Object Types Tree Bean and Object
Type View Bean. The desire to have an opportunity to
pereispolzovat these components for other pages is one
more reason of use of this mechanism. The tree of object
types is also used for the page which works with objects,
at the same time it isn't necessary to duplicate a code.

These classes are marked by the summary
"@View Scoped" and their copies exist while the user is
on the page.

5. REPRESENTATION LAYER

The layer of representation is realized by means
of Java Server Faces (JSF) - a platform for creation of the
user interface of the web applications written in the Java
language and library the Prime Faces 5.2 JSF component.

The following web pages were developed for
interaction of the user with system:

 page of authentication "Login";

 page of editing meta model "Administrator's panel";

 page of control of accounting entries of the Users
system;

 the page for operation with objects of system.

 For the organization of input and display the
following JSF components of Prime Faces library
were used:

 tables (dataTable);

 data entry fields (inputText);

 toolbars (toolbar);

 buttons (command Button);

 dialogs (dialog);

 texts (output Text);

 tooltip balloons (tooltip).

Operation with a meta model is the most
interesting part of system and is carried out by means of
the page of the editor of a meta model. It contains a tree of
object types and the table for display of attributes for the
selected object type. Here it is possible to create new
object types, to view, add and delete attributes. From this
page transition to the page of user account control is
carried out.

When clicking the Create button there will be a
dialog box in which it is necessary to enter a name of new
object type. In case of confirmation of creation of object
type the tree of object types will be updated.

6. ALGORITHMIC AND SOFTWARE OF
PROCESSING OF INPUT DATA
 AND CONTROL OF FLOWS

The developed program components represent
reflection of class model concerning the class ancestor
IMy Interface according to the architecture of inheritance
provided in a Figure-4.

Mechanisms of inter modular interaction are
constructed on interfaces of the created components. At
first there is an analysis of input information, parse of
request, monitoring of operability of inter modular
communications, and procedure of interaction according to
the algorithm provided in a figure 5 is launched only then.

In a Figure-6 the skeleton diagram of the software
of the server is provided. It consists of the following
components.

6.1 Human-computer interaction component

After arrival of start information and the first
phase of inter modular interaction the virtual link between
modules of service of request and its processing on the
server is dynamically realized. This channel is created for
all the time of execution of request up to receiving by a
response source from the server with use of descendants of
the basic IMy interface.

Figure-4. Modular architecture of inheritance.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11323

Figure-5. Diagram of a data interchange.

Figure-6. Architecture of the server software.

6.2 Server service of jobs

The server accepts the job from a source in a type
of text and string information. This information is
decompiled. The decompiling purpose - partition of the
job on operators and arguments.

After partition of the job on operators and
arguments the set of binary relations in which search of
key words operators is carried out is had. The second
element of the relation identified thus is an argument of
the operator. After completion of procedure of binary
identification the server launches dynamically loaded
module of service of the operator of language.

We will analyze algorithms of operation of
components of the decompiled job. Selection of My Select
starts with attempt of communication of the pointerful
server, contained in the second element of the binary
relation.

If attempt of communication is rejected, the
source obtains information on unavailability of object and
need of correction of request.

If attempt of communication is successful, cyclic
processing of all components of the decompiled job is
launched. In case of successful comparing the result of the
job is created and goes to a source.

Adding of My Insert is also realized from attempt
of communication of the pointer full server, contained in
the second element of the binary relation.

If attempt of communication is rejected, the
source obtains information on unavailability of object and
need of correction of request.

If attempt of communication is successful, cyclic
processing of all components of the decompiled job is
launched. In case of successful comparing the result of the
job is created and goes to a source.

The reduction of My Delete is similarly realized
from attempt of communication of the pointer full server,
contained in the second element of the binary relation.

If attempt of communication is rejected, the
source obtains information on unavailability of object and
need of correction of request.

If attempt of communication is successful, cyclic
processing of all components of the decompiled job is
launched. In case of successful comparing the result of the
job is created and goes to a source.

7. CONCLUSIONS

The cross-platform web application which will
provide users with the flexible tool for storage of an object
model of arbitrary data domain is result.
For achievement of the end result a row of tasks is solved:
 the chart of options of use of system is developed;

 the object meta model in the Java language is
developed;

 the database for storage of a meta model and
information on users is designed;

 the user interface by means of the JSF technology is
created;

 the user's guide and instructions for scanning are
made.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11324

The stage of programming was carried out with
use of a development environment of NetBeans, for data
storage MySQL DBMS is used.

REFERENCES

[1] Barroso L. and Holzle U. 2009. The datacenter as a

computer: An introduction to the design of
warehouse-scale machines. Synthesis Lectures on
Computer Architecture, vol. 4, no. 1, pp. 1-108.

[2] Chaudhry S. et al. 2005. High-performance
throughput computing. Micro, IEEE, vol. 25, no.3, pp.
32-45.

[3] Frigyik, B.A., Kapila, A. & Gupta, M.R. 2010.
Introduction to the Dirichlet distribution and related
processes. UWEE, Tech. Rep. UWEETR-2010-0006.

[4] Hoang Zhang and Kravets O.Ja. 2015. About
convergence of scalable Markov process to the
determined dynamic system with unique equilibrium
point. Advanced models and technologies in computer
networks: Proceedings of the International scientific
and practical conference (Yelm, WA, USA, 06 July
2015). Editor in Chief Dr. Sci., Prof. O.Ja. Kravets.
Yelm, WA, USA: Science Book Publishing House.
pp. 101-111.

[5] Hoelzle U. et al. 2009. The Datacenter as a Computer:
an Introduction to the Design of Warehouse-Scale
Machines. - 1st. Morgan and Claypool Publishers.

[6] Khoang Zhang and Kravets O.Ja. 2015. Identification
and the characteristic of data-centers operational loads
on the basis of the computing paradigm oriented on
throughput. Modern informatization problems in
economics and safety: Proceedings of the XX-th
International Open Science Conference (Yelm, WA,
USA, January 2015). Editor in Chief Dr. Sci., Prof.
O.Ja. Kravets. Yelm, WA, USA: Science Book
Publishing House. pp. 85-93.

[7] Kravets O.Ja. 2013. Mathematical Modeling of
Parametrized TCP Protocol. Automation and Remote
Control. 74(7): 1218-1224.

[8] Kravets O.Ja. and Oleinikova S.A. 2014. Multiagent
technology for the application of a distributing
function for load balancing in multiserver systems.
Automation and Remote Control. 75(5): 977-982.

[9] Kravets O.Ya., Makarov O.Yu., Oleinikova S.A.,
Pitolin V.M. and Choporov O.N. 2013. Switching
subsystems within the framework of distributed

operational annunciator and monitoring systems:
program design features. Automation and Remote
Control. 74(11): 1919-1925.

[10] Sang B., Zhan J., Lu G., Wang H., Xu D., Wang L.,
Zhang Z. and Jia, Z. 2012. Precise, scalable, and
online request tracing for multitier services of black
boxes. IEEE Transactions on Parallel and Distributed
Systems. 23(6): 1159-1167.

[11] Thusoo A., Shao Z., Anthony S., Borthakur D., Jain
N., Sarma J.S., Murthy R. and Liu H. 2010. Data ware
housing and analytics infrastructure at face book.
Proc. of the 2010 int. conf. on Management of data.
ACM. pp. 1013-1020.

