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ABSTRACT 

Paper contains model of combustion wave propagation in one-dimensional homogeneous layer of forest fuels 
taking into account the diffusion transfer of heat, release of energy due to combustion and dissipation of energy. Structure 
of combustion wave obtained. Conditions of equality of left and right limits of temperature and its spatial derivative in 
ignition point and ignition temperature used to obtain value of combustion wave propagation. 
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1. INTRODUCTION 

Modeling of extinguishing processes based on a 
full physical model is a complex computational problem 
[1, 2], which significantly complicates the analysis of the 
influence of parameters on the process characteristics. The 
problem of suppression the combustion wave is multi-
parameter, thus investigation of key processes based on 
numeric methods represents a significant computational 
challenge. Such resource-intensive models are not suitable 
for operational forecasts. The simplest approach is to use 
cellular automata, which, as a rule, compare the state of 
the cell with the space temperature of corresponding 
region and condition of vegetation on it, such as in [3-5]. 
In order to use this approach more rigorous patterns are 
required. For this reason, in spite of the computer 
technology development, analytical solutions of 
combustion problems are still relevant. 

Among the analytical solutions, obtaining 
burning speed, highlight set of papers based on the 
classical theory of combustion, which founders are the 
Frank-Kamenetskii and Zeldovich [6-7]. In these papers, 
the focus is on the investigating and forecasting of the 
combustion front velocity and the nature of its stability. 
The logical continuations of these works are [8-15]. 

Problems of the dynamics of forest fires are a 
arouse interest. Papers [16, 17] devoted to the 
determination of combustion wave velocity propagation at 
the ground and crown fires in the stationary case. One of 
the traditional approaches consists in assumption that the 
process propagates at predetermined velocity. It leads to 
the ordinary differential equation or equation system, 
where the velocity is a parameter [16-19]. So papers [16-
17] consider the stationary propagation of the crown forest 
front of fire based on the simplified diffusion-thermal and 
thermal mathematical models. These papers give a 
solution of the problem of finding the velocity of 
propagation of the combustion wave and its configuration 
based on various assumptions. The author uses the 
assumption of the infinitely small thickness of combustion 
and pyrolysis front, which leads to a homogeneous 
differential equation with the weak discontinuity of 

temperature rupture in the pyrolysis and combustion 
fronts. In order to determine combustion wave propagation 
velocity, the author uses the condition of temperature 
equality of the fire front to the given value obtained 
numerically and experimentally. Such a solution is 
suitable only if the infinitely thin combustion front exists, 
that is a limitation focusing the assumption above. 
Moreover, the assumption of the instantaneous combustion 
reaction at a given temperature does not allow modeling 
the causal relationship in any point between the preset 
temperature and the process of ignition at this point 
because it would lead to an unlimited increase in the 
burning rate. That's why in the A.M. Grishins papers 
temperature at the point of ignition is introduced as a 
condition for the problem closing only. 

In [8] the problem of flame propagation in a 
binary mixture is considered. This problem is formulated 
in the form of two equations (energy and concentration of 
one of the components). The reaction rate is determined by 
the Arrhenius law. The paper provides an expression of 
combustion wave velocity as an integral expression of the 
temperature, which is a useful result, but it does not allow 
obtain propagation wave velocity as function of 
independent input parameters. Paper [19] contains the 
relation between combustion wave configuration and its 
velocity, while the value of the combustion wave velocity 
is determined only numerically based on the numeric 
solution of the heat balance partial derivative equation. 
The paper considers one-dimensional and two-dimensional 
formulation of the combustion wave propagation problem. 
Two-dimensional formulation does not allow obtain a 
solution in the form of a stationary combustion wave. 
Even in the simplest case of the central symmetry in the 
polar coordinate system, the problem is reduced to one-
dimensional equation with coefficients containing the 
radial coordinate. Therefore the solution approaches the 
stationary only if the values of the radial coordinate of the 
combustion wave are big, that is equivalent to line 
combustion front. That is, this approach may be used only 
if there is a stationary solution that is independent of some 
linear combination of spatial and time coordinates. 
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In [20] solved the problem of determination the 
velocity and extreme conditions of wildfires propagation. 
As part of the problem solution, the author emphasizes 
that practitioners are primarily interested in such 
characteristics of the process of burning of forest 
vegetation as the velocity of propagation, the maximum 
temperature, and the total radiative heat fluxes into the 
media. This paper uses a averaged by height one-
dimensional model of the surface fire propagation on the 
vegetation layer in dimensionless variables associated with 
the position of the temperature profile of the maximum 
[16, 17, 20], which includes ordinary differential equations 
describing changes of temperature and concentration of 
the components of a binary mixture. This problem was 
solved by the diffusion approximation that allowed the 
author to exclude the kinetics of combustion processes. As 
a result of solution of the boundary value problem [20], 
the author found a relation between dimensionless form of 
the propagation velocity, the total thermal effect of 
combustion, heat and mass transfer coefficients and the 
maximum temperature [20]. 

Consideration of the heat balance differential 
equation in the partial, reducing it to an ordinary 
differential equation and its formal integration provides to 
set of solutions, depending on the propagation velocity; it 
is a useful result, but not complete. For a complete 
solution requires a physically reasonable algorithm for 
choosing solutions from this set to determine the 
propagation velocity. 

Thus, the aim of this paper is determining the 
propagation velocity and structure the combustion wave 
based on the analytical solution taking into account 
conduction, heat dissipation and heat emission in 
combustion. 
 
2. COMBUSTION WAVE FORMULATION 

Let’s consider the two-dimensional formulation 
of the problem of the stationary combustion wave 
propagation in the porous uniform layer of combustible 
materials. Analytical solution of this problem is possible, 
as a rule, in a substantially simplified formulation. Let’s 
look at the equation of thermal balance, modeling 
propagation of the combustion wave. 
 

 
t

QTKTTk
t

T v
a 





 

,    

 
where T, K - the temperature in the layer of combustible 
materials; k, 1/s - heat transfer coefficient of the fuel layer; 
Ta, K – ambient temperature;  - Laplace operator; K, m2/s 
- thermal conductivity within the layer of combustible 
materials; Q, K - thermal effect of flammable materials 
combustion divided by their specific heat; v - the 

fraction of unburnt combustible materials; t, s - time. 
This equation is a differential equation in partial 

derivatives. It can be solved numerically or analytically. It 
should be noted that the application of Fourier method for 
solving this equation represents a significant difficulty due 

to the presence in the equation v  that depends 

nonlinearly on the temperature. 
According to the method, described in [9], it is 

assumed that the process propagates with a constant speed 

c. So transformation   





 

c

x
tTtxT ,  can be used. 

When the point temperature is more than ignition 
temperature, starts the combustion Thus, the heat balance 
equation with the boundary conditions takes the form 
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where aTTu  .  

 
3. NONDIMENSIONALIZATION OF 
COMBUSTION WAVE FORMULATION 
Equation (1) has a discontinuous right-hand side, which 
complicates its solution by classical methods. Moreover, 
this equation contains parameter c, which was introduced 
during the transition from differential equations in partial 
derivatives, so the solution of (1) is not sufficient to 
determine speed of propagation of combustion and heat 
distribution. 

Therefore, condition of equality ignition point 
temperature to temperature of ignition having form 
  thuu 0  should be used. If the temperature of ignition 

point is higher than thu , than с is lower bound of 

propagation velocity. If temperature of ignition point is 
lower than thu , than сis upper bound of propagation 

velocity. 
The problem (1), supplemented by the condition 

of ignition contains 6 parameters that complicates the 
analysis, therefore, for obtaining a solution that is easy to 
analyze, we should reduce equation (1) to dimensionless 
form by introducing a critical time and temperature of thu .  

 
uuu th , ttt * , QuQ th ,      (2) 

 

''''
**

2
*

2 v
th

th
thth

t

Qu
ukuu

t

u
u

tc

Ku
 , 










  0,

0,1

* te

t
ttv  .   (3) 

 

After dividing both hands of equations by 
2
*

2tc

Kuth , and 

omitting the bar over dimensionless quantities we obtain 
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After simple transformations we obtain 
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Let’s define the relation between the reaction rate 

and the characteristic time as 1
*

t , and multiply both 

sides of equation (5) by 
2c

K
. As a result of 

transformations we obtain 
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In order to simplify the solution and its analysis, 

we introduce the following notation 
 

 KccK  ,  kk  ,       (7) 
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4. BOUNDARY VALUE PROBLEM SOLUTION 

The boundary value problem (8) has a solution 
which form depends on the t sign. Cause of the function 

v peculiarities we have a singular point 0t . Solution 

of equation (8) can be considered independently of each 
interval of continuity of right-hand side. Equation (8) is a 
linear ordinary differential equation of second order with 
constant coefficients and special right-hand side. The 
general solution without conditions of cross-linking and 
boundary conditions, in the absence of resonance can be 
written as: 
 

ttt eAeCeCu  021
21  ,      (9) 

 

where 2,1  - the roots of the characteristic equation, 0A  - 

function depending on the right-hand side of equation (8),  

21,CC - constants on each interval with continuous 

coefficients of the equation. 
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It should be noted that the roots of the 

characteristic equation are different considering the 
positive value of parameters. In the case where 1  equal 

to -1 resonance takes place. In this case denominator in 

(11) turns to zero. In case of resonance solution can be 

found as ttt te
k

Q
eCeCu 



 21
21 . However, 

resonance does not make differences in solutions. 
As noted above, the right-hand side has a 

different structure for positive and negative values of the 
variable t, therefore in order to apply classical solutions it 
is necessary to determine the crosslinking condition for 
time 0t . To this end, we integrate equation (8) in a 

small neighborhood 0 . 
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Let’s integrate the expression (12) for the inner 

integral taking into account that the integration interval is 

infinitesimal, while u  and 'v are finite. 
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Taking into account the finiteness of the integral 

of u over any segment in (13) and integrating, we obtain 
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Equation (14) means that the function is 

continuous. In order to solve problem (8) it is necessary to 
find a condition similar to (14) for the derivative. Integrate 
equation boundary value problem (8) 
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Taking into account that the integration interval is 

infinitesimal and terms u  and 'v  are finite, we integrate 

the expression (8) 
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Taking into account the expression (14) we 

obtain the condition for the crosslinking of the derivative 
in form 
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uu      (17) 

 
For obtaining solution weshould assume that at 

each interval of the members (1) continuity values 21,CC
are different. The solution of equation (8) has two 
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intervals continuity on which the integration constants are 
different, and therefore the solution looks like 
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In order to determine integration constants we use 

crosslinking conditions for the function (14) and its 
derivative (17) and determine the left and right derivatives 
at the point 0t  in the expression (18). Crosslinking 
conditions are supplemented by the boundary conditions at 
infinity (9), resulting in to the following expressions 
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Since the value of u in (18) should become zero 

according to the boundary conditions at the infinity, then 
according to (11) respecting signs of 1 , 2  should be 

considered 02,21,1  CC . As a result of simple 

transformations, we obtain a system of linear algebraic 
equations for the constants of integration in following 
form 
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Thus, the values of the constants in the solution 

of (18) looks like 
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Using the obtained values of the integration 

constants (22) into (18) we obtain the solution into the 
following form 
 

 

 






















 0,

1

0,
1

1

2

21

2

21

1

tAee
A

te
A

u
tt

t










    (23) 

 

5. OBTAINING COMBUSTION WAVE 
PROPAGATION VELOCITY 

Expression (23) is a solution of (8), but it 
implicitly includes an arbitrary parameter - the 

dimensionless combustion wave velocity kс , introduced 

in progress of solving the problem, so to determine the 
dynamics of the combustion wave propagation additional 
analysis is necessary. We introduce the function, 

depending on the parameter Kс specified as 

   00 uсu K  . As shown previously, the function  tu is 

continuous, that is      000  uuu , therefore, value 

at t=0 in (23) can be chosen at any interval. As a result of 
simple transformations (23), we have 
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The process of propagation the combustion wave 

is only possible in case of the condition   10 Kсu , 

taking into account (4) 
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In order to solve the equation (25) square root 

term should be moved to the left-hand side, and all the 
other terms in the right-hand side of equation 
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The solution (26) leads to the following set of roots 
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where kQQ 21  . 

Necessary and sufficient conditions for real 
solutions existence are radical expression in (27) and the 
left-hand side of equation (26). They are non-negative and 
radical expression under external root is positive. Those 
conditions are correspond to the system of inequalities 
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This condition is equivalent to the system 
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After substituting expression 11 Q in the 

solution (27), we obtain  
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which leads to an imaginary solution. Therefore, the value 
should be excluded from consideration. After some simple 
transformations we obtain 
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  (30) 
 

The condition 181  kQ  is not physical, 

since according to it reduction of heat of combustion 
contributes to combustion wave propagation.  Perform 
also simple transformations of the last condition of (31). In 
view of the foregoing, the system (31) takes the form 
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Obviously, all solutions of second inequality are 

also solutions of first inequality. Thus, the necessary 
condition for the existence of solutions of (25) has the 

form 181  kQ . In case of fulfilling this condition, 

the right-hand side of the third inequality is non-positive, 
while the left-hand side - non-negative for any non-
negative values of the variables satisfying first inequality. 
Then the third inequality should be excluded from 
consideration too. It should also be noted that if

181  kQ  then denominator in (27) does not become 

zero. 
In order to determine velocity of combustion 

wave propagation only positive solutions should be 
considered, namely 2,1,Kc  . If there are two positive 

solutions of (27) then   10 Kcu when 

2,1,  KKK ccc  . Thus, a steady combustion wave 

regime corresponds to the velocity 2,Kc . Condition 

181  kQ  corresponds to the single solution

2,1,  KKK ccc  . 

Thus, the velocity of combustion wave propagation has the 
following form 
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  (33) 

 
where kQQ 21  . 

Dimensionless temperature distribution in the 
combustion wave is determined by (1.23), with the 
substitution of (1.10), (1.11) and (1.33). 

For illustration, let’s present a numerical solution 
of the original problem and find its stationary solution in 
the one-dimensional case. Statement of the problem is as 
follows [19] 
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Boundaries 
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  (36) 

where   equals 1 in points, where ignition have occurred 
and 0 in rest points. 
 
Initial conditions are 

    xsigntv  10      (37) 

 
Initial temperature conditions are chosen in a way that 
they should be a upper bound for the analytical solutions. 
This choice ensures convergence to a stationary regime, 
subject to existence. The following parameters were used 

for solving the problem: 1071.0  sk , 
125101.3  smK , CQ 1200 ,  119,0  s , СT 29

, CTth 300 . 
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In order to solve problem (34)-(37) following 
numeric scheme was used: 
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n
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n
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n
iv   1

    (41) 

 

Values of spatial and temporal steps were mx 4105,3  , 

K

x
t

4

2
 . Number of spatial steps was enough to make 

temperature near edges of computation domain would 
differs from ambient less than 10-10C according to analytic 
solution. Number of time steps was 400000. Combustion 
wave propagation velocity measured after 200000 time 
steps in numeric solution. It helped to eliminate effects of 
convergence process and mitigate numeric fluctuations at 
velocity measurement. 

In order to provide effective solutions of infinite 
boundary conditions problem, algorithm of boundary 
motions was implemented. According to it, when ignition 
starts at the point with zero coordinates, values of all 
variables shifts by one space step to right and value in 

most left cell obtains in according to boundary conditions. 
Quantity of such shifts was a base of combustion wave 
propagation calculation.  

Figure-1 contains numeric and analytic solutions 
of combustion wave propagation problem comparison. 
The ordinate axis represents  temperature of the media and 
abscissae axis coordinate connected with the combustion 
wave. 

As shown by numerical calculations, total relative 
error between numerical and analytical solution equals 
0.3% according to the formula below: 
 







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



dxT

dxTT

analytic

numericanalytic

     

 
The relative error of the combustion wave 

propagation velocity was 0.24%. Using implicit scheme 
and more time steps would reduce the error, but this is not 
required in this work. Figure-1 (a) shows the numerical 
and analytical solution of this problem. Cause of small 
error the graphs are virtually indistinguishable, and 

therefore the structure of error numericanalytic TTT   is 

shown at the Figure-1(b). As can be seen at the Figure-1 
(b), maximum error occurs at the point of ignition, which 
is associated with the error of its determination using 
numerical solution. 

 

a  b
Figure-1. Numerical and analytical solutions of the combustion wave propagation problem and structure of the error. 

 
6. CONCLUSIONS 

In this paper a formula for determining the 
velocity of the combustion wave propagation in a 
homogeneous layer is obtained. In [19] condition of 
equality the temperature in zero point and the ignition 
temperature is used to solve the boundary value problem, 
in this article temperature and its derivative continuity 
used for it. Due to this, the temperature in the ignition 
point is used to find the velocity of the combustion wave, 
whereas in [9] it done numerically. The formulas obtained 

in this paper can be used to determine the patterns of 
propagating real fires. 
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