
 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11503

AUTOMATIC WIRING SYSTEM APPLIED TO THE TRAINING
MODULE M2CI

Diego F. Sendoya-Losada1, PedroTorres Silva2 and Harold Pérez Waltero2

1Department of Electronic Engineering, Faculty of Engineering, Surcolombiana University, Neiva, Huila, Colombia
2School of Basic Sciences, Technology and Engineering, National Open and Distance University, Bogotá, Colombia

E-mail: diego.sendoya@usco.edu.co

ABSTRACT

Training module M2CI is a system that allows undergraduate students to acquire control engineering skills and
competencies related to the automation of processes. The M2CI has several sensors and actuators for interacting with
temperature, position and liquid level plants. However, many times the students do not have the economical means to
travel or do not have time to use the equipment on the schedules in which the university attends the individuals, causing an
underutilization of the M2CI. In order to make better use of the M2CI, a system to control and monitor the plants and
instruments remotely is being implemented. As a part of this project, an automatic wiring system should be designed. In
the market, equipment that allow the connection of multiple points automatically can be found; however, the high cost of
these devices is a disadvantage. This article presents the design of hardware and software for a system that allows making
and keeping the M2CI connections by using synchronous serial communication. The hardware and software of the project
is based on Arduino, which makes it economical in comparison with the existing ones in the market. This contribution
serves as a reference for a future development that will allow the automatic connection via internet.

Keywords: automatic wiring, E-learning, engineering education, remote laboratories.

1. INTRODUCTION

Training module M2CI (Figure-1) is a system
that allows both undergraduate students and professionals
to acquire control engineering skills and competencies
related to the automation of processes. The M2CI has
several sensors and actuators for interacting with
temperature, position and liquid level plants. Currently the
National Open and Distance University (UNAD, for its
acronym in Spanish), has three training modules M2CI
located in Bogotá, Bucaramanga and Neiva cities.
Engineering students who wish to practice with this
system should be addressed to any of these three cities.
However, many times the students do not have the means
to travel to these cities or donot have time to use these
equipment on the schedules in which the UNAD attends
the individuals, causing an underutilization of the M2CI.

Figure-1. Training module M2CI.

In order to make better use of the M2CI, UNAD
is implementing systems to control and monitor the
different plants and instruments remotely, via internet.
Globally, there are different evidences showing the
increase that the use of remote laboratories has had in
traditional higher education and distance learning [1 – 4].
In order to remotely monitor and control the M2CI, it
should be designed a system that allows automatically
wiring the different components. The M2CI has about 256
independent connections, which can be carried out
depending on the number of instruments, sensors and
actuators that are wanted to work simultaneously. In the
market, equipment that allow the connection of 256 points
automatically can be found; however, the high cost of
these devices is a disadvantage [5].

This article presents the design of hardware and
software for a system that allows making and keeping the
256 M2CI connections, depending on the needs of the
individual, by using synchronous serial communication.
The hardware and software of the project is based on
Arduino, which makes it economical in comparison with
the existing ones in the market. This contribution serves as
a reference for a future development that will allow the
automatic connection via internet.

2. HARDWARE DESIGN

The Arduino UNO board has 14 pins, which can
be programmed as digital inputs/outputs [6]. However, for
this project it is required the control of 256 digital outputs,
which should give a value of 0 or 1, depending on the
information provided via serial to the Arduino board.
Below are the different sections of hardware.

2.1 Arduino UNO board

The Arduino UNO board is responsible for
receiving, processing and sending 256 bits, corresponding

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11504

to the different M2CI connections. Information is entered
as 32 packets of 8 bits. The "high" state of each bit
represents the respective connection that should be
activated. Moreover, the "low" state represents the
indicated connection that should be disabled. Once the 256
connections are established, these remain without change
until the user sends another 32 packets of 8 bits. The user

enters information by using the serial monitor of the
Arduino software. On the same monitor, a response of
confirmation, detailing which bits were activated and
which bits were deactivated, can be seen. The
communication with the serial monitor is done by using
pins 0 and 1 of the Arduino UNO board (Figure-2).

Figure-2. Serial communication with Arduino UNO board.

2.2 Shift registers

Once the Arduino UNO processes the
information received from the serial monitor, the 32
packets of 8bits are placed on the output pins 2, 3 and 4.
To achieve this, the chip 74HC595 is used (Figure-3). The
datasheet refers to the 74HC595 as an "8 bits serial-in,
serial or parallel-out shift register with output latches; 3-
state" [7]. In other words, it can be used to control 8
outputs at the same time while only a few pins on Arduino
UNO board are taken [8].

Figure-3. 8 bits serial-in parallel-out shift register.

In Table-1, the pin description of 74HC595 is
shown. In addition, datasheet also provides other
important information: The timing diagram (Figure-4) and
the function Table (Table-2).

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11505

Table-1. Pin description of 74HC595.

Figure-4. Timing diagram of 74HC595.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11506

Table-2. Function table of 74HC595.

The function table indicates everything of
significance that happens on a rising edge. When clockPin
goes from LOW to HIGH, the shift register reads the
status of the data pin. The displaced data is stored in a
register of internal memory. When latchPin goes from
LOW to HIGH, the sent data moves from the
aforementioned memory register to the output pins.

2.3 D-Type latches

It can be seen that using a smaller amount of
output pins of the Arduino UNO board, 8bits data can be
sent. If D-type latches are used as, for example, 74HC573
(Figure-5), then Arduino UNO board can send 32 packets
of 8 bits serially and each packet can be routed to the
74HC573 of interest [9]. Thus, the output of each
74HC573 will keep the information even if the set of input
bits changes.

Figure-5. Octal D-type latch

The pin diagram and the function table of
74HC573 is presented in Table-3 and Table-4.

Table-3. Pin description of 74HC573.

Table-4. Function table of 74HC573.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11507

It can be observed that the LE pin of 74HC573
allows data transfer from the input to the output.
Therefore, if a 1 is placed on this pin, the 8 bits data from
the register 74HC595 is transferred to the output of the
74HC573. If a 0 is placed on the LE pin, the output is not
changed, even if the input is changed. In this way, the
Arduino UNO board can send, by using serial
communication, 32 packets of 8 bits to the register
74HC595, and the output of this chip is simultaneously

connected to the input of 32 latches 74HC573. The LE pin
of each 74HC573 is used to transfer only the 8 bits that
corresponds to them.

2.4 Decoding/demultiplexing

To select the 32 D-type latches, two 4-to-16 lines
decoder/demultiplexer are used, 74HC154 [10]. The pin
diagram and the function table of 74HC154 are presented
in Table-5 and Table-6.

Table-5. Pin description of 74HC154.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11508

Table-6. Function table of 74HC154.

By using a binary code of 4bits in the inputs of
74HC154, one of its 16 outputs is selected (24 = 16).
Therefore, a binary code of 5 bits and two chips 74HC154
are required to activate 32 outputs (25 = 32), which are
connected to the LE pins of the latches 74HC573.
However, instead of using 5 Arduino's digital outputs, the
data are sent, using again serial communication via
another register 74HC595, whereby the number of pins
used to route each packet of 8 bits is reduced from 5 to 3.

The serial-parallel conversion is presented in
Figure-6. Digital outputs 2, 3 and 4 of the Arduino UNO
board are used to send 32 packets of 8bits via serial to the
first register 74HC595, labeled in the figure as 74HC595-
LD.The output data are simultaneously placed on the
inputs of the 32 D-type latches. Digital outputs 5, 6 and 7
of the Arduino UNO board, send serially 5 bits to the

second register 74HC595 in order to address the 32 D-type
latches. The output of this second registergoes to a D-type
Flip-Flop, 74HC574 [11], which allows addressing the
corresponding D-type latch, once the appropriate data
packet is received. To perform this function, the pin 8 of
the Arduino UNO board is used to generate the clock
signal that allows this synchronization. Once the 5 bits of
addressing appear on the inputs of the chips 74HC154,
they activate the corresponding output and enable the
appropriate D-type latch. As the output pins of the
74HC154 are active-low, and the enable inputs of the D-
type latches operate with a high level, each output of the
74HC154 must be passed through an inverter that allows
adjusting these logic levels [12]. The subcircuit labeled as
74HC154, is detailed in Figure-7.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11509

Figure-6. Serial-parallel conversion.

Figure-7. Decoding/demultiplexing.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11510

The outputs of chips 74HC154 are responsible of
enabling or disabling the 32 D-type latches by using LE
pin. As can be seen in Figure-8, the data from the first
register 74HC595 are arriving simultaneously to all D-type
latches. The four subcircuits labeled as 74HC573-1,

74HC573-2, 74HC573-3 and 74HC573-4 contain the same
hardware, and their only difference is that the LE signal
comes from a distinct output of the subcircuit 74HC154.
In Figure-9, the subcircuit 74HC573 can be seen in detail.

Figure-8. Subcircuits to latch information.

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11511

Figure-9. Subcircuit with D-type latches in detail.

2.5 Output relays

Once the information is present on the output of
the D-type latches 74HC595, it is transferred to 32
modules, each one of 8 relays, which are compatible with
Arduino (Figure-10).

Figure-10. 8-channel relay module.

Each relay is connected to one of the 256 M2CI
connections. In this way, the relays are responsible for
connecting or disconnecting the connections present in the
M2CI. Some of these connections carry logic levels of 0 or
5 volts, others are responsible for the supply of sensors
and actuators (12 volts), and others carry signals of
alternating current (120 VAC).

3. SOFTWARE DESIGN

As mentioned in the previous section, the user
enters 32 packets of 8 bits by using the serial monitor. By
means of serial communication and multiplexing, 256
digital outputs can be controlled only with 7pins of the

Arduino UNO board - from2 to 8. The Arduino code is
presented below:

// Digital output connected to serial data (DS) input of
// 74HC595-LD
const byte dataPin1 = 2;
// Digital output connected to latch pin (ST_CP) of
// 74HC595-LD
const byte latchPin1 = 3;
// Digital output connected to clock pin (SH_CP) of
// 74HC595-LD
const byte clockPin1 = 4;
// Digital output connected to serial data (SD) input of
// 74HC595-FFD
const byte dataPin2 = 5;
// Digital output connected to latch pin (ST_CP) of
// 74HC595-FFD
const byte latchPin2 = 6;
// Digital output connected to clock pin (SH_CP) of
// 74HC595-FFD
const byte clockPin2 = 7;
// Digital output connected to CLK pin of 74HC574 for
// synchronization
const byte clkpin = 8;
// Variable that takes the count of the data packets
byte sel = 0;

void setup() {

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11512

 Serial.begin(9600);
 for (byte i = 2; i <= 8; i++) {
 pinMode(i, OUTPUT);
 }
}

void loop() {
 while (Serial.available() > 0) {
 byte data = Serial.parseInt();
 data = constrain(data, 0, 255);
 digitalWrite(latchPin2, LOW);
 shiftOut(dataPin2, clockPin2, MSBFIRST, sel);
 digitalWrite(latchPin2, HIGH);
 // A clock pulse is generated to synchronize the process
 digitalWrite(clkpin, LOW);
 digitalWrite(clkpin, HIGH);
 digitalWrite(clkpin, LOW);
 digitalWrite(latchPin1, LOW);
 shiftOut(dataPin1, clockPin1, MSBFIRST, data);
 digitalWrite(latchPin1, HIGH);
 Serial.println(data, BIN);
 }
 sel++;
 // If 32 packets are received, the packet counter
 // restarts
 if (sel == 32) {
 sel = 0;
 }
}

4. RESULTS AND DISCUSSIONS

In order to verify the operation of the designed
system a test is performed. The user enters three data
packets of 8bits each one, by using the serial monitor. The
data entered are "1", "20" and "240".

The first data entered is "1", which is "00000001"
in binary. This first data is addressed to register 0 by using
the decoder/demultiplexer (Figure-11).

Figure-11. Addressing to register 0.

This addressing allows that "00000001"is
transferred to the first group of outputs Q0-Q7, where Q7
in this case corresponds to the MSB and Q0 is the LSB. As
shown in Figure-12, none other output suffers
modification.

Figure-12. Test with data 00000001.

The second data introduced by using the serial monitor is
"20", which is equivalent to "00010100" in binary. This
data is addressed to the register 1, by using the
decoder/demultiplexer (Figure-13).

Figure-13. Addressing to register 1.

This addressing allows that "00010100" is
transferred to the second group of outputs Q8-Q15, where
Q15 corresponds to the MSB and Q8 is the LSB. As
shown in Figure-14, the first group of 8 bits is not affected
when the transference of information is made, only the
second group of outputs is modified.

Figure-14. Test with data 00010100.

The last data used for the test is "240", which is
equivalent to "11110000" in binary. This data is addressed
to register 2 by using the decoder/demultiplexer (Figure-
15).

 VOL. 11, NO. 19, OCTOBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 11513

Figure-15. Addressing to register 2.

This addressing allows to "11110000" to be
transferred to the third group of outputs Q16-Q23, where
Q23 corresponds to the MSB and Q16 is the LSB. As
shown in Figure-16, the two first groups of 8 bits are not
altered when the transference of information is made, only
the third group of outputs is modified.

Figure-16. Test with data 11110000.

When the user continues typing 8 bits data, these
are transferred to the next group of outputs, while the
previous groups of outputs do not change. By completing
the transfer of the 32 packets of 8 bits, the system is
enabled to receive another set of 256 bits, modifying all
outputs previously attached.

In this way, the design of an economic system
that allows, by using simple hardware and software,
automatically to establish 256 M2CI connections, has been
achieved. Future work will allow that the 256 bits are not
sent by using the serial monitor, but via internet. With this
approach, a remote access to training module M2CI could
be done.

REFERENCES

[1] Santana I., Ferre M., Izaguirre E., Aracil R. and

Hernandez L. 2013. Remote laboratories for education
and research purposes in automatic control systems.
Industrial Informatics, IEEE Transactions on. 9(1):
547-556.

[2] Esquembre F. 2015. Facilitating the Creation of
Virtual and Remote Laboratories for Science and

Engineering Education. IFAC-PapersOnLine. 48(29):
49-58.

[3] Kaluz M., Garcia-Zubia J., Fikar M. and Cirka L.
2015. A flexible and configurable architecture for
automatic control remote laboratories. Learning
Technologies, IEEE Transactions on. 8(3): 299-310.

[4] Menacho A., Castro M. and Gil R. 2016, February.
Competency-based learning management systems:
Practices using remote laboratories to improve the use
of the subjects and get required competences. In: 2016
13th International Conference on Remote Engineering
and Virtual Instrumentation (REV) (pp. 109-111).
IEEE.

[5] E8460A 256-Channel Relay Multiplexer. (n.d.).
Retrieved May 06, 2016, from
http://www.keysight.com/en/pd-
1000003000:epsg:pro-pn-E8460A/256-channel-high-
density-reed-relay-multiplexer?cc=CO

[6] Arduino - ArduinoBoardUno. (n.d.). Retrieved May
06, 2016, from
https://www.arduino.cc/en/main/arduinoBoardUno

[7] 74HC_HCT595 [Pdf]. (2016, February 25). NXP
Semiconductors.

[8] Arduino - ShiftOut. (n.d.). Retrieved May 06, 2016,
from https://www.arduino.cc/en/Tutorial/ShiftOut

[9] 74HC_HCT573 [Pdf]. (2016, March 4).NXP
Semiconductors.

[10] 74HC_HCT154 [Pdf]. (2016, February 29). NXP
Semiconductors.

[11] 74HC_HCT574 [Pdf]. (2016, March 4).NXP
Semiconductors.

[12] 74HC_HCT04 [Pdf]. (2015, November 27). NXP
Semiconductors.

