STUDIES ON STANDALONE PHOTOVOLTAIC POWER SYSTEM FOR CHARGING THE BATTERY

K. Bhaskar¹, K. Siddappa Naidu¹ and N. G. Ranganathan²
¹Department of Electrical and Electronics Engineering, Chennai, India
²Department of Chemistry Vel Tech University, Avadi, Chennai, India
E-Mail: bhaskark@veltechuniv.edu.in

ABSTRACT
An attempt has been made to charge the battery with P-V module obtained from a company. Initially P-V characteristics have been carried out for five different solar intensities and for four different temperatures. P-V characteristics have also been done for five different Shunt resistances and three different series resistance which will form the basis of equivalent circuit of a solar panel charger used to charge the battery circuit. Three different modes of charging the battery have also been tried. Results are presented in this communication.

Keywords: photovoltaic (PV), photovoltaic generator (PVG), modeling, validation, battery charging.

INTRODUCTION
Solar oriented vitality has gotten much consideration as of late. Sun based radiation can be changed over into helpful vitality straightforwardly by utilizing different advances. An attempt has been made in this work by converting solar radiation directly into electricity using PV (photovoltaic) system. [1-11].

A PV power era framework alludes to a framework principally made out of a force conditioner, a force transmission and dissemination framework. Occurrence sunlight based vitality on the photovoltaic module is changed over into a power output. In the present work the aim is to charge a lead acid battery of 2V, 10 Ah. The module simulation can be made by some sort of algorithms like Fuzzy [12], Neural [13], and Neural-fuzzy [14]. In the present work a photovoltaic power generation system, a PV module simulator having identical output characteristics is obtained from an industry located near our place and the system is used as such to carry out the present targeted work of charging a battery of aforementioned specification. The photovoltaic module provided by the industry consists of series parallel connection to form a PV module array for performing experiments on maximum power point tracking (MPPT) studies [15]. The characteristics of the photovoltaic generator used are provided in Table-1.

Table-1. Characteristics of the photovoltaic generator.

<table>
<thead>
<tr>
<th>specification</th>
<th>1000W/m² 25°C AM1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series Numbers</td>
<td>95090144</td>
</tr>
<tr>
<td>Total Number of panels</td>
<td>16</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>75W</td>
</tr>
<tr>
<td>Current of SC(short circuit) I_{SC}</td>
<td>10A</td>
</tr>
<tr>
<td>Tension of OC (open circuit) V_{OC}</td>
<td>36V</td>
</tr>
</tbody>
</table>

The simulated data, provided by the industry, are given in Figure-1 to Figure-4.
PV module generator is made up of 16 modules each containing 36 cells connected in series. The maximum power of the system is 1.2kWc. Its optimal output voltage and current are of 68V and 18A. Figure-3 and Figure-4 provided by the Industry are for a PV module generator that combines $M_s = 4$ modules in series and $M_p = 4$ modules in parallel, and the Series Resistance $R_s = 0.177 \, \Omega$ and Shunt Resistance $R_{sh} = 220\, \Omega$.

With the PV module supplied by the industry a charge controller is added for charging the lead acid battery [1]. The most fundamental capacity of a charge controller is to anticipate battery cheating. On the off chance that the battery is permitted to routinely cheat its future will be enormously decreased. The capacity of the charge controller is to sense the battery voltage and it will empower to lessen or stop the charging current when the voltage gets high. For this situation the charge controller will basic open or limit the circuit between the PV cluster framework and the battery when the voltage has ascended below the set level. The testing of the charging the battery has been done at three different conditions. Viz. Connection to the panel directly to the battery as provided in Figure-5.
a) Connection to the panel to the battery through an ordinary charger as provided in Figure-6.

b) Connection to the panel to the battery with MPPT.

The same battery used for all the three conditions. The results are provided in Figures 5 to 10

From the Figure-8 and Figure-9 it is clear that the battery is not charged to 100% SOC (state of charge). It is clear that the battery charging time is more than 8 hours. This may be due to inefficient charging control. From the Figures 10 and 11 it is clear that the battery is charged to a certain extent and it is clear that this system does not track the varying output of the panel and hence there is still a loss of energy because of the mismatch between the panel and battery and change in output power of the panel with respect to sun irradiation and temperature. From the Figures 12 & 13 it is clear that the loss of energy is minimized to a large extent and the battery is charged quickly compared to other two cases and thus the controller is an efficient one for battery charger and thus it can be seen that employing MPPT system results into an efficient charge controller.
CONCLUSIONS

Our study yielded the following main results:
P-V attributes for a module obtained from a company. This yielded characteristics at 45 °C for several intensities. The same module is tested for its characteristics for four different temperatures. Again its
characteristics for five different shunt resistances and three different series resistances (form of equivalent circuit that is needed for a charger) are tested and these are the main things which are used to have the solar panel needed to charge the battery. Solar panel voltage current characteristics and battery voltage and current attributes for three different mode of charging viz.

a) When P-V panel is directly connected to Battery through a switch

b) When P-V panel is directly connected to conventional charger through a switch

c) When P-V panel is connected to battery through MPPT charger

It is found that the battery charger to a satisfactory extent when P-V panel is connected to battery through MPPT charger.

REFERENCES

