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ABSTRACT 

Reading EEG signals manually is a very difficult and time-consuming task. In many situations, we like to get the 
results in a very short amount of time (e.g. monitoring seizure patients). In other cases, we like to study huge amount of 
data. In both cases, reading EEG manually is not practical and therefore automatic approach is preferred. In this paper, we 
propose a simple system that can achieve the state of the art results for IED classification (accuracy of 82%) while using a 
relatively simple algorithm. The advantage of using a simple algorithm is to make it possible to implement this system on 
cheap consumer devices like phones. 
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1. INTRODUCTION 

Electroencephalograms (EEGs) are referred to 
signals collected using electrodes placed on the scalp. 
EEGs are one the main means by which neurologists 
diagnose brain-related diseases such as epilepsy and 
seizures 0. Commonly diagnosed abnormalities include 
epileptic events, seizures and strokes [2]. Neurologists 
manually read and interpret EEGs, which is very time-
consuming process due to complex nature of these signals.  

Figure-1 shows a typical clinical EEG [3]. As 
we can see from this picture, each EEG consists of several 
channels and as a result an EEG is multi-dimensional 
signal. Diagnosing diseases using an EEG recording 
requires a detailed knowledge of the patient’s medical 
history, mental and physical state during the recording 
process so that abnormal variations in the signal are 
properly interpreted.   

EEG machine records electrical potential between 
two electrodes using surface electrodes and that potential 
can be recorded using surface electrode. Electrode 
impedances should be maintained between 100 and 5000 
ohms.  The International Federation of Societies for 
Electroencephalography and Clinical Neurophysiology has 
 

 
 

Figure-1. Example of EEG signal [3]. 
 

recommended the conventional electrode setting (also 
called 10–20) for 21 electrodes (excluding the earlobe 
electrodes) [4] [5] [6]. Electrode placement has been 
standardized by international 10-20 system that uses 
anatomical landmarks on the skull including a heart pulse 
electrode that is known by EKG. The designations; Fp 
(fronopolar), F(frontal), T(temporal), O(occipital), 
C(central), P(parietal) are utilized in the 10-20 system. 
Numbers combined following the letters for location 
reflect either the left (odd numbers) or right (even 
numbers) hemisphere of electrode placement. The “z” 
designation reflects midline placement (i.e. Cz is central 
midline). While electrodes conduct electrical potentials 
from the patient scalp to an electrode box (or jack box), a 
montage selector allows physicians to use either bipolar 
montage or referential montage.  
Figure-2 shows this montage. 

EEGs composed of 1 dimensional signals 
gathered from different parts of the scalp. Together these 1 
dimensional signals create a high dimension signal that 
can be used by trained physician to diagnose different 
conditions such as abnormal activities for a patient. One of 
the major challenges for many doctors and hospitals is the 
fact that reading EEGs is very specialized expertise and 
can only be performed by licensed technician or doctors. 
Moreover, in case of seizure patients, we often want to 
know about the abnormal activity in real time (so we can 
help the patient). If 
 

 
 

Figure-2. 10-20 Montage used in this research [6]. 
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we only rely on human experts to read and interpret EEGs 
we cannot solve these issues. 

The ability to automatically predict critical events 
from EEG has been actively researched for the past 40 
years. Unfortunately, clinical use of such systems is 
limited due to bad performance. EEG events are defined as 
critical points in a signal, such as a spike or interictal 
epileptiform discharges (IED) that correlate with the 
presence of different diseases. A classification error rate of 
5% for these EEG events would be acceptable clinically 
[7]. However, current systems do not operate at this level 
of accuracy due to a lack of adequate algorithms.  

We have developed a system, that automatically 
interprets EEGs, and delivers good results on clinical data. 
An overview of the system is shown in  
 

Figure-3. It incorporates a traditional support 
vector machine (SVM) based system. First an N channel 
EEG is transferred into N independent signals and each 
signal is processed using a moving window. The output of 
each window in then feed into each SVM machines. Our 
system is a hybrid SVM machine that include two SVMs 
that classifies its input into one of the 3 classes: 1- 
background 2- eye-blink 3- IED. We will show our system 
can compete with other state of the art systems despite the 
fact we are using a very simple machine learning 
algorithm.  

The Paper is organized as follows: In the next 
two sections, we will introduce SVM and hybrid SVM 
machines. Next experiments will be presented.  We show 
our algorithm can compete with the state of the art while 
enjoying much simpler architecture.  
 
2. SUPPORT VECTOR MACHINES 

Classifiers are typically optimized based on some 
form of risk minimization. Empirical risk minimization is 
one of the most commonly used techniques where the goal 
is to find a parameter setting that minimizes the risk 
function [8]: 
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where  is the set of adjustable parameters and xi, yi are 
the input and output, respectively. However, minimizing 
(1) does not necessarily imply the best classifier possible. 
For example,  
Figure-4 (adapted from [8]) shows a two-class problem 
and the corresponding decision boundaries in the form of 
hyper-planes. All the hyper-planes can achieve 
 

 

 

Figure-3. Block diagram of the proposed system. 
perfect classification and, hence, zero empirical risk. 
However, C0 is the optimal hyper-plane because it 
maximizes the distance between the margins, therefore 
offering better generalization. This form of learning is an 
instance of Structural Risk Minimization (SRM) where the 
goal is to learn a classifier that minimizes a bound on the 
expected risk, rather than the empirical risk [9] [10]. SVM 
learning is based on this SRM principle. 

SVMs can transform data into a high dimensional 
space where the data can be separated using a linear 
hyper-plane. The optimization process for SVM learning 
therefore begins with the definition of a functional that 
needs to be optimized in terms of the parameters of a 
hyper-plane. The function is defined in such a way that 
guarantees good classification (if not perfect 
classification) on the training data and also maximizes the 
margin. The points that lie on the hyper-plane follow [8]: 
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The goal of the optimization process should be to 

maximize the margin. Posing this as a quadratic 
optimization problem has several advantages and the 
functional can be compactly written as [8]: 
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Only a few training instances have an impact on 

the function and the optimal decision surface. This comes 
from the fact that, at the end of the optimization, only a 
small percent of the training examples have non-zero 
multipliers. These instances are called Support Vectors. 
Note that we have assumed that the data are perfectly 
separable. This is not the case in most real data. This 
problem is handled by introducing slack variables into (3): 
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Notice that the linearity in the SVM is manifested 

in the dot products. Suppose we transform the data into a 
higher dimension space where the data is linearly 
separable. The theory of Kernel functions is used to avoid 
dealing directly with the high dimensional space and the 
excessive computations that result from such 
transformations [8] [11]. For example, RBF Kernel used in 
this work defined as: 
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The final classifier takes the form: 
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Figure-4. Example of Linear classification [8]. 
 
where N is the number of support vectors. This is 
definition of a binary classifier and sign of f decides about 
the class that SVM predicts.  
 
3. HYBRID SVM MACHINE 

SVMs are very powerful binary classifiers, e.g. 
they can classify the input into two classes. In our 
problem, we are interested to classify the input into three 
classes: 1- IEDs 2- eye-blinks 3-background. We proposed 
architecture ( 

Figure-1) that makes this goal possible. The 
first step is to classify any input signal into IED and non-
IED classes. The next step is to classify non-IEDs into 
eye-blink and background. This is an example of 
hierarchical classification [12]. During training of the first 
SVM, all eye-blink and backgrounds are lumped together 
with one label (non-IED).  For training the second SVM 
all IEDs are removed from the training set and we only 
train them on non-IEDs. One can think of the second SVM 
a fine-grain classifier.  

During evaluation, we first use the first SVM to 
find all IEDs. If a signal is classified as non-IED then it 
should pass through the second SVM that classify it into 
either background or eye-blink. The final result is a three-
way classification of the input signal. 
 
4. EXPERIMENTS  

In this section, we will present the experimental 
results for a classifier that classify IEDs, eye-blinks and 
background events. We have used a publicly available data 
[7] to conduct 
 

Table-1. Number of different classes in our data. 
 

Event 
Number in annotated 

subsection 

IED 5128 

Eye-Blink 331 

Background 201 

 
these experiments. The set was not annotated and therefore 
we have annotated a portion of it by hand and divided the 

data to test and training subsets. We have trained two 
SVM machines that each classifies the events into two 
classes. The first machine classifies between IEDs and 
non-IEDs and the second one classifies between eye-
blinks and backgrounds. In other words, after we decided 
something is not IED then we decide if it is background or 
eye-blink.  Each EEG file consists of multiple channels. 
We have defined events as one second of one channel; e.g.  
each event is a 1 dimensional signal. Following [13] [14] 
[15] we call these second-channel. Error! Reference 
source not found. shows the number of each class in 
our dataset. 

Feature extraction goal is to represent a raw EEG 
signal by small number of attributes or features which 
contains all the relevant information for a given task [16]. 
It is important to notice that the size of feature vector 
relative to raw EEG is very small. The reason is to avoid 
the curse of dimensionality (e.g. when the dimensionality 
of the data is high learning all parameters become 
prohibitive). In this work, we have used short term Fourier 
transform (STFT) to extract features. These features 
represent energy in different frequency bands [17]. In 
STFT, the signal is divided into small segments with 
overlapping data and fast Fourier transform (FFT) applied 
to each one. The output of successive STFTs can provide a 
time-frequency representation of the signal. To accomplish 
this, the signal truncated by multiplying it by a window so 
that the signal is zero outside the window. The STFT is 
defined as [17]: 
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where x[k] denotes a signal and w[k] denotes an L-point 
window function.  

The STFT is applied to one second EEG signal 
segmented into a 256 point segments with 50% 
overlapping between each successive segments. Each 
segment is multiplied by a 256 point Triangle window, 
then the FFT algorithm is applied to each segment. 

After feature extraction, we can train our model 
using SVM machines described in the previous section. To 
train SVM machines we present them with features for 1 
second of signal for each channel (second-channel) and 
the 
 

Table-2. comparing proposed system with other state 
of the arts systems. 

 

Algorithm Accuracy (%) 

RBF Neural Network [17] 75% 

Neural Network [19] 80% 

Associate System  [20] 87% 

HMM [21] 84% 

This work 82% 
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label for that second-channel. The labels are annotated 
manually with help of professional EEG technicians. We 
have used 3200 number of data points to train a binary 
classifier. First SVM classifies the input into none IED 
and IED. The second one classifies only non-IEDs into 
background and eye-blink.  For evaluation, we have used 
the trained SVMs and feed them with features extracted 
from test section of data and our hybrid SVM predicts a 
label for every second-channel. It is important to notice 
those training and evaluation subsets are mutually 
exclusive. Table-2 shows the result of our approach along 
with some state of the art results reported in the literature 
for similar problems (but on different data). As we can 
see, our results are close to other state of the art results 
despite the fact that we have used a much simpler model.  
 
5. CONCLUSIONS  

In this paper, we have introduced a hybrid-SVM 
algorithm that can classify the input EEG signal into three 
class: 1- IEDs 2- Eye-blink 3- Background. In the context 
of this paper background refers to everything other than 
IEDs and eye-blink. We have shown that our proposed 
algorithm can achieve state of the art results for this task 
while using a relatively simple system. Next step for this 
research is to use other type of machine learning like 
neural network, deep-learning, Bayesian and KNN in 
place of SVM machines. 
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