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ABSTRACT 

Human activity recognition research is an active area in an early stage of development. We present two 

approaches to activity recognition based on symbolic representations of multivariate time series of joint locations in 

articulated skeletons.One approach uses pairwise alignment and nearest-neighbour classification, and the other uses 

spectrum kernels and SVMs as classifiers. We tested both approaches on three datasets derived from RGBD cameras (e.g., 

Microsoft Kinect) as well as ordinary video, and compared our results with those of other researchers. 
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1. INTRODUCTION 

Human activity recognition has been studied for 

approximately 25 years and has become an important 

challenge for computer vision. The applications of activity 

recognition include video surveillance, robotics, video 

indexing and querying, content based video analysis, 

behavioral biometrics (e.g., recognizing people by the way 

they walk), biomechanics, medicine, monitoring (e.g., 

patients, elderly people, babies or kids), dancing and 

sports analysis, video entertainment, and video games, 

among others.  

Activity recognition is challenging because of 

variations in motion, illumination, partial occlusion of 

humans, viewpoint, anthropometry of people involved in 

the actions, and variable execution rates of behaviors [1], 

[6], [12], [29], [31]. Methods that rely on the identification 

of human body parts, present additional challenges such as 

detecting and tracking people in videos. 

In this paper, we present two approaches to 

activity recognition based on sequences of measurements 

obtained from articulated skeletons. The input to our 

methods are articulated skeletons obtained from RGBD 

sensors (e.g., Microsoft Kinect) and by detecting the 

skeletons in 2D from video using Yang and Ramanan’s 
pose-estimation technology [42]. 

One approach represents the moving skeleton as a 

multivariate symbolic sequence, derived from series of 

real-valued joint locations with the help of the SAX 

algorithm [19], [20]. Sequence alignment is used to assess 

the similarity of these sequences and k-Nearest Neighbour 

is used as a classifier. 

The other approach begins with symbolic 

sequences but represents the sequence for each joint with a 

different symbolic alphabet, ensuring that sequences for 

all the joints can be concatenated into a single, long 

sequence without losing localized information. Once this 

is done, a spectrum kernel is built and an SVM is used to 

find support vectors. Finally a multiclass classifier is built 

usingthe one-vs-all (OVA) approach. 

We discuss the details of these approaches in 

Section 3 and present related work in Section 2. Our 

datasets are described in Section 4. Sections 5, 6, and 7 

describe the procedure, results, and discussion of our 

experiments, respectively. Section 8 concludes our work. 

 

2. RELATED WORK 

RGBD technology (e.g., Microsoft’s Kinect) and 
Shotton et al.’s algorithm [32] offer new possibilities for 
research in activityrecognition, where the focus is on the 

recognition task itself rather than on low-level vision. 

Nevertheless, activity recognitionresearch predates these 

new technologies and is worth reviewing. The following 

two sections review conventional vision-based research 

and more recent methods based on RGBD technology, 

respectively.  

 

2.1 Conventional computer vision approaches to  

activity recognition 

Informative surveys of activity recognition 

research include[1], [2], [3], [5], [10], [35], [36] [37]. 

Pose dictionaries or codebooks are a recent trend. 

For example, Zheng et al. [43] present a novel approach 

for cross-view action recognition by transferring sparse 

feature representations of videos between different view 

angles. They do so by first constructing two separate 

codebooks from pairs of videos taken attwo different 

views using k-means clustering; and then learning 

atransferable dictionary pair by encouraging videos from 

each pairto have the same sparse representation in their 

respective dictionaries. As the result, the dictionary pair 

links features between the two view angles that are useful 

for action recognition. Sadanandand Corso [30] present a 

new high-level representation of videos called Action 

Bank. Inspired by the recent object bank approach to 

image representation, an action bank representation 

comprises the collected output of many pre-trained 

template-based action detectors that each produce a 

correlation volume. A standardSVM classifier is then 

trained on the action bank feature vector. We note that 

detectors from their bank (or codebook) of detectors are 

also designed to tolerate changes in appearance, scale, 

view angles, and tempo. 
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Junejo and Aghbari [14] present a method like ours in its 

reliance on the SAX algorithm, which transforms real-

valued seriesinto sequences of symbols [21], but different 

in how it uses the sequences. In their method, symbols 

indicate features of trajectories of joints such as velocity, 

acceleration, and spatiotemporal curvature. Sequences are 

compared with the SAX distance metric, which amounts to 

looking up the distances between corresponding pairs of 

SAX symbols in a table, summing the squared distances 

and multiplying by the compression rate [19]. In contrast, 

we compare sequences with sequence alignment in one 

approach and with a kernel method in another.  

Campbell and Bobick [6], pioneers in recognizing 

continuous actions, trained and tested their methods on 3D 

data provided by a commercial motion capture system. For 

modeling, they used a set of anatomical constraints based 

on Euler angles represented in a phase-space that related 

the variables of the body motion. In phase-space, actions 

correspond to sets of points. Sheikh et al. [31] describe the 

2D motion of actions as sets of 13 joint trajectories. Unlike 

most researchers, who use sequential orderingin place of 

an explicitly defined temporal dimension, Sheikhet al. 

represent action in a 4-D XYZT space. They use a 

specialcase of a_ne projection - a weak-perspective 

projection- to obtain normalized XYT trajectories to 

measure the view invariant similarities between two sets 

of trajectories. Similarity is measured as the angle between 

corresponding subspaces that the trajectories project into. 

Gavrila and Davis [11] used a 3D articulated 

model of a human with 17 Degrees of Freedom (DOF) for 

upper-body motion for pose recovery and tracking of 

images. To deal with view invariance, they minimized a 

chamfer distance between the 3Dmodel and four different 

views. They obtained the data for recognition using a 

Moving Light Displays (MLD) framework; where23 

markers indicated the locations of the eyes, mouth, hips 

and shoulders, arms and legs. For recognition they used 

dynamic time warping [4]. Yacoob and Black [40] model 

activities in terms ofthe optical flow of body parts (torso, 

thigh, calf, foot, and arm).Eight parameters of flow 

(obtained by the methods of Juet al[13]) yield signals for 

each action. Signals are transformed to make the method 

invariant to anthropometric measures and execution rate. 

These transformations can be represented by coefficients 

and bases of Principal Component Analysis (PCA). These 

parameters serve as features in the recognition process, 

which returns the target activity whose parameters are 

closest to those ofthe source activity. 

 

2.2 Action recognition based on RGBD technology 

Li et al. [17] present a bag-of-3D-points method 

for action recognition using RGBD depth maps. Their 

work is based on anaction graph [18] to model the 

dynamics of human motion where the nodes, or salient 

postures, are characterized by bags of 3Dpoints. They 

sampled each of the three Cartesian planes (XY,XZ, and 

YZ) and clustered all the data. The clusters correspond to 

the salient postures of the action graph. 

Wang et al. [38] describe a feature based on the 

Fourier Temporal Pyramid for representing the motion of 

a joint in an action.They also characterize the relationship 

between human subject and environmental objects using 

the Local Occupancy Patterns (or LOP) at each joint. 

Their LOP features are computed using occupancy 

information based on 3D point clouds surrounding each 

joint. Additionally, they develop a data mining method for 

learning discriminative subsets of joint “actionlets” (joint 
postures distinctive to a given action) using a multiple 

kernel learning approach [7]. 

Ellis et al. [9] present an algorithm for reducing 

latency when recognizing actions, particularly important in 

interactive entertainment. They used logistic regression to 

find in real time body pose representations related to 

actions. The 3D skeletal joints obtained from a Microsoft 

Kinect sensor were used as features. Sung et al. [33] used 

a Kinect device as the sensor input; however, they 

extracted the skeleton joints using the PrimeSense tracking 

system. These skeleton joints, along with HOG features 

extracted from the depth maps, are given to a hierarchical 

maximum entropy Markov model (MEMM) to uncover 

the different characteristics of human activities. Xia et al. 

[39] presented a view-invariant representation based on 

spherical coordinates of histograms of 3D joint locations 

(HOJ3D). The 3D skeletal joints data is taken from a 

Microsoft Kinect device, and extracted by the Shotton et 

al. algorithm [32]. They applied linear discriminant 

analysis for extraction of meaningful features and found 

clusters for mapping the frame’s actions into single cluster 
(visual word). They did the classification using a discrete 

HMM technique. Yang et al. [41] present an action-

recognition approach based on Eigen-joints. They obtained 

three features at each frame corresponding to pairwise 

joint differences. These features are:motion, calculated 

between consecutive frames; posture at the actual frame; 

and offset between the actual frame and the first frame. 

Given noisiness and high dimensionality of the data, they 

used PCA for obtaining the Eigen-joints. A Naïve-Bayes-

Nearest-Neighbour classifier was used for classification. 

Bloom et al. [4] proposed an online action 

recognition method for fast detection of compound actions 

using hierarchical body model that can be configured to 

detect actions based on the low level body parts that 

according to them those are the most discriminative for a 

particular action. 

 

3. TWO APPROACHES FOR ACTION 

RECOGNITION BASED ON SYMBOLIC 

SEQUENCES 

The inputs to our algorithms are multivariate time 

series of skeletal joints. It is important to us that activity 

recognition should not depend too strongly on the input 

device, so our algorithms were developed to work with 2D 

skeleton data from conventional computer vision methods 

- for which we used the poseestimation technology 

developed by Yang and Ramanan [42] in combination 

with the skeleton tracking software of Pirsiavash and 

Ramanan [28] (Figure-1) - as well as 3D skeleton data 

from the Microsoft Kinect sensor and Shotton et al.’s 
algorithm [32] (Figure-2). 
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3.1 Symbolic Sequences and Pairwise Alignment  

(SSPA) 

 

3.1.1 Description 

Representations for any recognition task must be 

designed with an eye to classification or matching. One 

approach, which we call Symbolic Sequences and 

Pairwise Alignment (SSPA) transforms multivariate series 

into discrete symbolic sequences, and relies on sequence 

alignment to match novel sequences to stored instances. 

(An alternative is to not transform the real-valued series 

and use Dynamic Time Warping (DTW) to find matches 

between novel and stored instances, as in [11]. 

Surprisingly, given the loss of information entailed by 

transforming real numbers into symbols, sequence 

alignment on symbolic sequences outperformed DTW on 

real-valued series in every experiment we performed.) 

The transformation of real values into symbols is 

done by the SAX algorithm [19], [20]. First, a series is 

transformed into its Piecewise Aggregation 

Approximation (PAA), which approximates the series as a 

sequence of “steps,” each at a discrete level.Then each 
unique level is assigned a symbol from an alphabet and the 

original series is rewritten as a sequence of these symbols. 

SAX involves two parameters: the size of the window for 

doing the PAA and the length of the alphabet. Larger 

window sizes generally produce more compressed but less 

faithful representations of the original series. 

Distances or similarities between symbolic 

sequences can be assessed with sequence-alignment 

techniques like those used in bioinformatics. We use one 

of the simplest: the Needleman-Wunch algorithm [27]. A 

measure of similarity is the cost of aligning two sequences 

(roughly the amount that one sequence must be modified 

to make it match another). 

We represent activities as multivariate symbolic 

sequences, where each variable represents a joint (left 

elbow, right knee, head, etc.) The similarity between two 

activities is the sum over the similarities of the symbolic 

sequences for each joint, where the similarity between 

symbolic sequences for a single joint is a sequence 

alignment score normalized to the unit interval.  

Given this method of assessing the similarities of 

activities, we can lay out training data in a metric space, 

after which novel activities can be classified with a 

Nearest Neighbor classifier. 

 

 

3.1.2 Computational cost 

The complexity of this approach is roughly 

quadratic in space and time on the length of the symbolic 

sequence. The cost is dominated by sequence alignment. 

The approach could be madelinear by using a parallel 

version of the Needleman-Wunch algorithm like the one 

proposed by Naveed et al. [26]. We can breakdown the 

component costs as follows: 

 

 
 

Figure-1. 2D skeleton poses are tracked over time to 

produce skeleton tracks. The blue skeleton identifies 

the man while the yellow skeleton  identifies the 

womanin the video. 

 

 
 

Figure-2. Superimposed skeleton on depth map recorded 

by Kinect. 

 

 Preprocessing: uses linear interpolation and a Loess 

smoother. Both run in time proportional to the length 

of the series.  

 Representation: The SAX transformation runs in 

time proportional to the length of the series. 

 Building model: The Needleman-Wunch algorithm is 

quadratic in space and time on the length of the 

symbolic sequence. 

 Testing: Nearest Neighbor takes O(N) time where N 

is the number of points or features in the space, that 

is, on the size of the training and testing dataset. 

3.2 Symbolic Sequences and Spectrum Kernel (SSSK) 

 

3.2.1 Description 

The previous approach kept the sequences for 

each joint separate, summing the similarity scores over 
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joints. An alternative is to concatenate symbolic sequences 

for the joints into one long sequence. We take care to use a 

different alphabet for each sequence. This ensures that 

joints can be identified uniquely, so that when two 

sequences are compared, the alphabet for, say, the left 

elbow is the same in both sequences. We held the SAX 

window size parameter to 1; in other words, we used SAX 

only to discretizereal-valued series. Given sequences for 

all instances of an activity, we used the spectrum kernel 

technique [15], [16] as a sequence-similarity kernelfor use 

with SVM-based classification. We call this the 

SymbolicSequences and Spectrum Kernel (SSSK) method. 

The spectrum kernel technique is common in 

computational biology for protein classification. The 

feature map for a SVMis based on the frequency spectrum 

of the sequence. The k-spectrum of a symbolic sequence is 

a vector describing the frequency counts of all consecutive 

subsequences of length k (alsoknown as k-grams) in the 

original sequence. It is important tonote that the index of 

each element in the k-spectrum corresponds directly to a 

unique k-gram of the alphabet (see Figure-3 for a simple 

example). In other words, for any alphabet �with size|�|, 
thelength of any k-spectrum vector is equal to |�|� 

 

Let �= {a,b,n} 
aa ab an ba bb bnnanbnn 

ksbanana= <   0  0   2   1    0   0   2   0   0 > 
ksana= <   0  0   1   0  0   0   1   0   0 > 

ksbbnn=  <   0  0   0   0   1   1   0   0   1 > 
 

Figure-3. The k-spectrum (abbreviated as ks) for three 

different sequences (banana, ana, bbnn) are shown 

fork = 2. The alphabet � has 3 symbols {a, b, n}. 

 

In our work, each variable sequence uses a 

unique alphabet.That means for an action described by � different variable sequences, where each is described by 

an alphabet of size|�̂|, each k-spectrum vector will 

containሺ�|�̂|ሻ�number of elements. For example, actions 

in the MSRAction3D dataset (see below) are described by 

60 different variable sequences (one for each of the three 

dimensions of each joint, for each of twenty joints). Using 

a modest alphabet of 5 symbols to describe each variable 

sequence, we end up with ሺ͸Ͳ ∗ ͷሻ� elements for each k-

spectrum. Clearly, we are working with very high-

dimensional data vectors. 

For classification, we use a kernel method that 

can take advantage of the k-spectrum feature. The best 

known of a class of algorithms for recognition or pattern 

analysis that use kernel methods is the Support Vector 

Machine (SVM). The goal of kernel methods is to map the 

data into higher dimensional spaces in order to separate 

the data linearly with a hyperplane. This mapping function 

rely needs to be calculated. Instead it suffices to use the 

dot product kernel �ሺݔ,  ሻ. In our case the dot productݕ

kernel is equivalent to the spectrum kernel ��, where ��ሺݔ,  ሻ is the inner product of two k-spectrum vectors xݕ

and y (see Fig. 4). Note that if x and y share many k-

grams, their inner product will yield a high value, which 

intuitively reflects the high similarity of their 

subsequences. 

ݏ�  = .ͳݏ�) .ͳݏ� ͳݏ� .ͳݏ� ʹݏ� .ʹݏ�͵ݏ� ͳݏ� .ʹݏ� ʹݏ� .ʹݏ� .͵ݏ�͵ݏ� .͵ݏ� ͳݏ� ʹݏ� .͵ݏ�  (͵ݏ�

 

Figure-4. The spectrum kernel ��for 3 different 

sequences, where ���is the k-spectrum 

for sequenceݏ�. 
 

Leslie et al. show that the spectrum kernel �� can 

be efficiently computed using a tree data structure similar 

to a trie or suffix tree [15], [16]. Given the kernel, we use 

a SVM package (e.g., SVMlight) to build a binary 

classifier for each action class using the one-vs-all model. 

Lastly, we create a multi-class classifier by ranking the 

output of the binary classifiers and returning the class label 

associated with the highest score. 

 

3.2.2 Computational cost 

The space complexity for this approach is 

dominated by the kernel-building module and the training 

of SVMlight. The tree data structure for the kernel 

requires �ሺ�݊ሻ nodes, where n is the length of the longest 

input sequence and � is the length of the � −grams [15], 

[16]. In our case, the length of an input sequence is equal 

to the number of variable sequences used to describe each 

instance times the number of frames (i.e.݊ = � ݎܾ݁݉�݊∗ − ݂݋ −  During training, the space .(ݏ݁݉ܽݎ݂

complexity of SVM is quadratic in the total number of 

training instances. 

The time complexity, on the other hand, derives 

from the complexity of the following modules:  

 Preprocessing of data uses linear interpolation and the 

Loess smoother. Both run in linear time on the length 

of the series. 

 Representation: Converting real multivariate time 

series into symbolic sequences using the SAX 

algorithm is linear to the length of each series (i.e., the 

number of frames). 

 Kernel: Building the spectrum kernel takes �ሺ�݊ሻ 

time, similar to the space complexity [15]. 

  Building Model: SVM typically has a training time 

complexity that goes from �ሺ�ሻto �ሺ�ଶ.ଷሻ, where M 

is the total number of training instances [34]. 

 Testing: The time complexity for testing with a 

trained SVM model is linear on the total number of 

support vectors, which are typically much smaller 

than �. For a detailed analysis of the test time 

complexity in the context of the spectrum kernel, see 

the work of Leslie et al. [15]. 

 

4. DATASETS 

We evaluated the SSPA and SSSK methods on 

three datasets. 

 

4.1 KINECTU of a dataset (3D) 

We recorded videos of a single actor performing 

each action 20 times using the Microsoft Kinect device. 
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The actor was instructed to do the first 10 instances of 

each action in a slower manner than the latter 10 instances. 

All videos lasted at most 8 seconds. The depth maps 

captured by the Kinect were converted into articulated3D 

skeletons using the Shotton algorithm [32]. Though the 

algorithm yielded 20 joints for each skeleton, we only 

used 15 joints in our representation. The camera was fixed.  

The entire dataset consists of eleven activity classes: carry, 

climb a chair, climb a table, crawl under a table, lift a box 

from a chair, lift one hand, put a box on a chair, put a box 

on a table, sit on a chair, sit on a table, and step over an 

object.  

The scene used to record the action was a 

relatively small space, which led to some occlusions of the 

actor in some of the videos. Furthermore, the depth map 

captured by the Kinect camera is not perfect due to the 

inherent noise of the sensor, resulting in a noisy data series 

that contains missing points. Pre-processing steps, such as 

interpolation and smoothing, are needed to clean upthe 

data. 

 

4.2 MSRAction3D dataset (3D) 

The MSRAction3D dataset is publicly available 

and was collected by a depth sensor similar to a Kinect 

device. The dataset contains twenty actions: high arm 

wave, horizontal arm wave, hammer, hand catch, forward 

punch, high throw, draw x, draw tick, draw circle, hand 

clap, two hand wave, side boxing, bend, forward kick, side 

kick, jogging, tennis swing, tennis serve, golf swing, pick 

up and throw. Ten different actors were used, 

eachperforming each action three times. The Shotton 

algorithm [32] was used to recover the 3D positions of 

each joint from the depth map. 

 

4.3 DARPA mind’s eye sub-dataset (2D) 

The DARPA Mind’s Eye program has created a 
dataset of roughly 7000 videos of actors performing 48 

different actions in a variety of scenes. We selected videos 

for twelve actions: carry, dig, fall, jump, kick, pick up, put 

down, run, stand, throw, turn, and walk. All the videos 

were shot with a fixed camera. The viewpoint on the 

actors varied from full-face to side view. There were 

multiple actors, males and females, and generally very 

high intra-class variability. 

To obtain skeletons for the actors in these videos, 

we applied the 2D pose estimation software of Yang and 

Ramanan [42] in combination with the tracking software 

from [28]. Each skeleton comprises fifteen 2D points. 

We selected 438 video clips based on DARPA’s 
movies as training data. We pre-screened these videos to 

ensure that the detected skeletons actually occupy the 

same 2D space (roughly) as the people they are supposed 

to represent. This was necessary because sometimes 

skeletons are detached from their people; for example, the 

person might be throwing a ball with his feet firmly on the 

ground but the detected skeleton might be fit to branches 

in a nearby tree. This was the extent of our screening; in 

particular, we did not require the skeleton’s limbs to be in 
the same 2D locations as those of the source person. The 

skeleton might have two arms in the air, for example, 

while the source video shows a person self-occluding one 

arm and carrying a bag in the other. Clearly, these 

skeletons provide a noisy signal. 

 

5. PROCEDURE 

We used the SAX algorithm [19], [20] publicly 

available online (http://cs.gmu.edu/~jessica/sax.htm) to 

build our symbolic sequences. The kernel construction 

software provided by Leslie’s lab was an ideal fit for our 
application http://cbio.mskcc.org/leslielab/software/string-

kernels) However,the software was developed in the 

context of protein classification and slight modifications to 

the alphabet - and consequently the substitution matrix - 

were needed for our spectrum kernel. All of our 

classification experiments were done using 10-fold cross 

validation. Each experiment was done 10 times and the 

average performance across 10 runs is reported. We obtain 

an accuracy measurement by first building an aggregated 

confusion matrix over all 10 runs, and then dividing the 

sum of the major diagonal vector by the total number of 

elements in the matrix. For each dataset, we evaluated the 

SSPA and SSSK methods over a small range of parameter 

settings. We show the best parameter configurations in 

Table-1 and report the correspondingresults in the next 

section. 

Additionally, to make our findings comparable 

with other published results for the MSRAction3D dataset, 

we present results obtained by following the experimental 

procedure of Li et al. [17]. For this method, the dataset 

was divided into three subsets of eight actions each and 

cross-subject testing was performed on each subset. Half 

of the positive instances for each unique actor were used 

in training and the other half for testing. An overall 

accuracy is obtained by averaging across all three subsets. 

 

Table-1. Parameter settings used in our experiments. 
 

 SSPA SSSK 

KINECTUofA 

PPA window = 1 

alphabet size = 14 

gap = -2 

match = 2 

mismatch = -1 

alphabet |�̂|= 7 

k = 5 

MSRAction3D 

PPA window = 1 

alphabet size = 14 

gap = -2 

match = 5 

mismatch = -2 

alphabet |�̂|= 5 

k = 5 

DARPA 

Mind’s Eye 

PPA window = 1 

alphabet size = 14 

gap = -2 

match = 2 

mismatch = -1 

alphabet |�̂|= 

10 

k = 5 

 

6. RESULTS 

The overall cross-validation classification 

accuracy for our two methods are summarized in Table-2. 

 

http://cs.gmu.edu/~jessica/sax.htm
http://cbio.mskcc.org/leslielab/software/string-kernels
http://cbio.mskcc.org/leslielab/software/string-kernels
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Table-2. Accuracy for 3 different datasets obtained from 

running 10-foldcross-validation 10 times on each set. 
 

 SSPA SSSK 

KINECTUofA 

MSRAction3D 

DARPA Mind’s 
Eye 

0.931 

0.900 

0.542 

0.766 

0.770 

0.348 

 

Figures 5 and 6 show the confusion matrices for 

the KINECTUofA dataset using our SSPA and SSSK 

methods, respectively.Similarly, Figures 7 and 8 show the 

confusion matrices for the DARPA Mind’s Eye dataset. 
The key-action mapping for all three datasets can be found 

in Appendix A.1. 

 

 
 

Figure-5. Aggregated confusion matrix for the 

KINECTUofA dataset across 10cross-validation 

runs using SSPA. 

 

 
 

Figure-6. Aggregated confusion matrix for the 

KINECTUofAdataset across 10cross-validation 

runs using SSSK. 

 

 
 

Figure-7. Aggregated confusion matrix for the DARPA 

Mind’s Eye datasetacross 10 cross-validation runs 

using SSPA. 

 

For the MSRAction3Ddataset, we show the 

confusion matrix for our SSPA approach across the entire 

dataset in Figure-9. We also present results under the 

cross-subject testing paradigm using three equal subsets of 

eight actions each. Performance is averaged across the 

three subsets and is presented in Table-3, along with other 

published results for comparison. 

 

 
 

Figure-8. Aggregated confusion matrix for the DARPA 

Mind’s Eye dataset across 10 cross-validation runs 

using SSSK. 
Table-3. Classification accuracy for the MSRAction3D 

dataset from variouspublished methods and ours, using 

cross subject testing on three subsets ofeight actions each. 
 

Method 
Accur

acy 

Recurrent Neural Network (2011) [23] 

Dynamic Temporal Warping (2006) [25] 

Hidden Markov Model (2006) [22] 

Latency aware. Logistic regression (2012) [9] 

SSSK 

SSPA 

Action graph on Bag of 3D points (2010) [17] 

Histograms of 3D joints (2012) 29 [39] 

EigenJointsNa¨ıve Bayes Nearest Neigh 
(2012) [41] 

Mining Actionlet Ensemble (2012) [38] 

0:425 

0:54 

0:63 

0:657 

0:707 

0:727 

0:747 

0:789 

0:823 

0:882 
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7. DISCUSSIONS 

Our best result for the KINECTUofA dataset was 

93.1%; for the MSRAction3D benchmarking dataset it 

was 90.0%; and for the DARPA Mind’s Eye dataset, 
54.2%. The large number of people, noisy signal, different 

view angles, self-occlusion and high intraclass variability 

in the DARPA dataset clearly hurt. That said, the DARPA 

dataset is the least contrived, most natural of the three.One 

compelling lesson of this study is that some datasets are in 

a sense too easy to serve as indications of how algorithms 

will work on natural, real-world activity identification 

problems. We compared our methods to other published 

results on the cross-subject test. The results are shown in 

Table 3. Our methods outperform four other approaches. 

Wang et al. [38] achieve considerably higher recognition 

accuracy than ours. This is probably because they use not 

only skeletal joints but also incorporate occupancy (LOP) 

features that capture information regarding action-object 

relationship. 

The confusion matrices tell us a lot about the 

sources of errors in our classifications. The KINECTUofA 

dataset indicates confusion between lift a box from a chair, 

put a box on a chair, and put a box on a table. These 

confusions arise because we do not detect objects. Also, 

the difference between putting a box on chair or putting a 

box on a table depends on the height of the box and how 

much a person needs to bend or stretch the body to 

perform the action. The confusion between lift one hand 

and put a box on a table is due to the fact that the actor 

performed these actions in a very similar way. The actor 

lifted a small box from the table using one hand and left 

his arm in a nearly straight horizontal position. This looks 

very much like the actor is going to put a small object on a 

table. 

For the MSRAction3D dataset, the action bend is 

confused with action pick up and throw. The bend action 

starts with the body upright in a standing position. Then 

the body bends and returns to the initial position. These 

motions resemble the pick up portion of pick up and 

throw. The action hammer is confused with the draw tick 

action. The forward punch action is confused with both the 

horizontal arm wave and high throw actions, and the 

horizontal arm wave action is confused with the high arm 

wave action for the SSPA approach. In the last four 

actions it seems that SSPA can recognize a wave action 

but is not able to recognize if the action occurs in front of 

the body or above the human trunk; in both cases most of 

the movement is done in the horizontal direction. 

In the DARPA Mind’s Eye dataset the biggest 
confusion occurs between carry, run, and walk. By visual 

inspection of the movies we found it is difficult to 

distinguish carry from walk if one cannot detect objects. 

We tried it ourselves: We superimposed the derived 2D 

skeletons onto a white background and tried - without 

success - to classify carry and walk. One needs to see an 

object, or strong skeleton cues that an object is there, to 

make this distinction with reliable accuracy. As to run vs. 

walk and run vs. carry, our approach is based on pose, not 

velocity, because symbolic sequences are ordinal 

representations that lose velocity information. The 

confusion matrix in Figure-7 also shows the difficulty we 

had distinguishing throw from jump. Again, by visual 

inspection of skeletons on a white background we 

observed that when the actors were going to throw an 

object, they crouch and then stretch their bodies, much as 

they do when they jump. 

Both the SSPA and SSSK approaches have free 

parameters. We ran extensive experiments to determine 

whether performance was robust over ranges of these 

parameters. We found that a PPA window size near 1 

often yielded the best accuracy, while varying the alphabet 

size (for a fixed PPA window) had negligible effects. For 

the spectrum kernel, our experiments suggest that 

accuracy peaks with k = 5 and performance drops 

significantly for k > 10. 

 

8. CONCLUSIONS 

The methods presented here, SSPA and SSSK, 

are simple, quite efficient, moderately accurate, and work 

with 3D skeletons obtained from Kinect sensors and 2D 

skeletons obtained from vision algorithms. They are not 

the most accurate methods in the comparison in Table 3, 

but one important lesson of this study is that accuracy 

depends as much or more on the training and test corpora - 

on the degree to which activities include other activities, 

and the variability in view angle, and self-occlusion and 

related factors - and on exogenous abilities such as 

recognizing objects, as it does on the algorithm. For the 

time being, algorithms like SSPA and SSSK, which work 

with different input devices and have been tested on 

widely different data sets, have a role in helping the field 

of activity recognition establish some standard test corpora 

and benchmark results, even if other algorithms 

outperform SSPA and SSSK on particular corpora. 

 

 
 

Figure-9. Aggregated confusion matrix for the 

MSRAction3D dataset across 10 different 

cross-validation runs using SSPA. 
 

As the field moves toward standardized corpora it 

should consider the sources of intra- and inter-class 

variability. The former is often due to imprecise class 

labels. For example, carrying a sack of potatoes does not 

look anything like carrying a glass of wine, so 
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labelingboth carry is asking for trouble. An important 

source of inter-class variability is what we call the prefix 

problem: Someactivities have others as prefixes. For 

example, throwing a ball has raising an arm as a prefix. 

The prefix problem is a methodological problem, having 

to do with how we assess accuracy, not a technical 

problem having to do with how we represent or detect 

activities. The right solution, we think, is to give credit for 

the detection of prefixes. When throwing a ball contains 

raising an arm, the detector should get credit for both 

answers. More sophisticated scoring schemes might 

upweight the containing activity (throwing a ball), but 

none should penalize a system for detecting both activities, 

as we currently do. 

In extensive experiments with seven approaches 

to activity recognition, we found SSPA to be the best-

performing over all the corpora we tested [24], while 

SSSK also yielded reliable performance across the board. 

In other words, they are robust. Much work remains to 

identify the reasons they are robust. It seems 

counterintuitive that the first step of both approaches is to 

throw away metric information, and yet both can perform 

as well or better than methods that keep real-valued 

information, such as dynamic time warping. We also 

experimented with approaches that map real-valued joint 

locations to semantic features, such as ”left hand above 
head,” and found, again, that SSPA outperformed them 
with SSSK not far behind. 

In one respect, this is good news: SSPA and 

SSSK borrow from sequence analysis methods in 

computational biology, where the state of the art is 

advancing very quickly. As activity recognition scales up 

from short videos to continuous monitoring over long 

intervals, efficient sequence analysis methods 

fromcomputational biology will find a new home. One 

immediate application of these methods is to the problem 

of covariance or coarticulation between joints. We and 

other researchers treat joint locations as independent 

across joints, which, of course, lose a lot of information 

about coarticulation. We think that multiple sequence 

alignment methods such as MUSCLE [8] will recover 

coarticulation information and improve performance. 

In conclusion, the contribution of this work is two 

algorithms that perform well and efficiently on data sets 

with very different characteristics, derived from RGBD 

(e.g., Microsoft Kinect) and conventional computer vision 

technology. To our knowledge, this paper is first to 

establish performance measures for such a variety of test 

corpora. While the performance of our algorithms is not 

the best in comparisons on the MSRAction3D dataset, the 

performance of SSPA and SSSK can serve as an easily 

understood benchmark over several corpora. 
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Appendix 

 

A.1 Action keys for Results 

Tables A-1, A-2, and A-3 contain key-action 

mapping for results presented in Section 6. 

 

Table-A-1. Action keys for KINECTUofA. 
 

Keys Actions 

a1 Carry 

a2 climb a chair 

a3 

 
climb a table 

a4 crawl under a table 

a5 lift a box from a chair 

a6 lift one hand 

a7 put a box on a chair 

a8 put a box on a table 

a9 sit on a chair 

a10 sit on a table 

a11 step over an object 
 

 

Table-A-2. Action keys for MSRAction3D. 

 

Keys Actions 

a1 high arm wave 

a2 horizontal arm wave 

a3 Hammer 

a4 hand catch 

a5 forward punch 

a6 high throw 

a7 draw x 

a8 draw tick 

a9 draw circle 

a10 hand clap 

a11 two hand wave 

a12 side boxing 

a13 bend 

a14 forward kick 

a15 side kick 

a16 jogging 

a17 tennis swing 

a18 tennis serve 

a19 golf swing 

a20 pick up and throw 

 

Table-A-3. Action keys for DARPA Mind’s Eye. 
 

Keys Actions 

a1 carry 

a2 dig 

a3 fall 

a4 jump 

a5 kick 

a6 pick up 

a7 put down 

a8 run 

a9 stand 

a10 throw 

a11 turn 

a12 walk 
 


