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ABSTRACT 

In the contemporary mechanical engineering, we often face the problem of classification of processed parts 
according to the different criteria. In this research, we used hierarchical cluster analysis (CA) to form the groups of six 
grades of tool steels according to flat grinding machinability by wheel 5NQ46I6VS3 (Norton Vitrium). The topography of 
parts was estimated according to ten parameters of roughness, measured in two orthogonal directions coinciding with the 
vectors of transverse and longitudinal traverses. It was revealed that for the classification three clusters should be assigned, 
they include: 1 - W18, W6Mo5, W9Co5, W9Mo4Co8; 2 - W12V3Co10Mo3; 3 - Cr12. Clusters are put into a sequence of 
the deterioration of the topography of ground surface and, first, for flatness deviation and a decrease of its micro-hardness. 
 
Keywords: cluster analysis, classification of steels, metrics (distance), dendrogram, scheme of union, machinability, grinding 
 
1. INTRODUCTION 

At the present moment, in many branches of 
mechanical engineering a wide range of various materials 
is used. They differ from each other by their chemical 
content, metallography, physical and mechanical 
properties. They are often grouped according to the most 
important characteristics for particular operating 
conditions: electrical conductivity, magnetic properties, 
thermal conductivity, radiation resistance, cuttability, etc. 
[1-2]. The question arises: how to classify the materials 
according to many properties. The only way to solve this 
problem is to cut off the most criteria and the return to the 
small-sized classical tasks or to unite the criteria, replace 
the “bunches” of them by one, artificially built on its base. 
That is how the direction of “multidimensional analysis” 
appeared, which is efficient for the classification of objects 
of CA [3]. In English cluster means “bunch”, “bunch of 
grape”, “cluster of stars”, etc. This method of research was 
developed in the recent years due to the possibility of 
computer processing of large databases. It provides the 
distinguishing of compact groups of objects remote from 
each other, “natural” division of total into areas of the 
cluster. It is used when the initial data is presented in the 
form of proximity matrix or distances between the objects 
or in the form of points in the multidimensional space. 
Sets of the second type are the widest spread; for them CA 
is oriented to distinguish some geometrically remote 
groups, inside which the objects are close. This method 
allows taking into account the effect of significant data 
multidimensionality; it gives the possibility of laconic and 
simpler formation of multidimensional structures; it 
reveals objectively the existing, directly non-observable 
regularities by means of obtained factors or main 
components [3-5]. 

This research is devoted to the clustering of tool 
steels according to the quality of grinding surfaces using 
the hierarchical CA, the essence of which is in the 
sequential union of smaller clusters or in the division of 
them into smaller ones [3; 5]. Such approach to the 
estimation of grindability of steels is innovative. It is not 
practically used by mechanical engineers but it can 

decrease the labour-intensiveness of the development of 
standards of cutting modes and technological 
recommendations, in particular, grinding of dies and high-
speed steel tools. The calculations were made using the 
program Statistica 6.1.478.0. 
 
2. METHOD OF RESEARCH 

The method of research includes three 
sequentially performed stages: conditions of the 
performance of natural experiment; interpretation of 
experimental data using the statistical methods and its 
clusterization. 
 
2.1 Conditions of the performance of the natural 
experiment  

Experiments were carried out by the peripheral of 
an abrasive wheel according to the scheme of pendulum 
grinding at the following unchangeable conditions: flat 
grinding machine model 3G71; wheel Norton Vitriumform 
01, dimensions 7620250   mm and characteristics 
5NQ46I6VS3, cutting properties were accepted as the best 
among 16 tested wheels; technological parameters: cutting 
speed vc = 35 m/s, longitudinal traverse sl = 7 m/min, 
transversal traverse st = 1 mm/double pass, cutting depth t 
= 0.015 mm, operating allowance z = 0.15 mm, coolant 
cutting fluid 5% emulsion Akvol 6 (Technical 
Specifications 0258-024-0014842-98), supplied by 
watering on the workpiece in the amount of 7-10 l/min; 
the subject of the research is patterns of cylindrical form, 
dimensions: diameter D = 40 mm, height H = 40 mm, end 
served as a grinding surface; number of duplicating tests 

n=30 ( 03;1v ). 

Experimentally the observed objects 6;1i  carry 

the following information of tool steels: 1 – W9Co5 (64-
66 HRC), 2 – W9Mo4Co8 (66-68 HRC), 3 – W18 (64-66 
HRC), 4 – W6Mo5 (62-64 HRC), 5 – W12V3Co10Mo3 
(66-68 HRC), which are used to manufacture high-speed 
steel plates (HSSP) of assembled edge tools; 6i – Cr12 
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(61-63 HRC) - for shape-generating parts of matrix and 
punches of cold stamping. 

Main features for the estimation of topography of 
the tool surface were chosen: roughness parameters [9-10; 
12] -Ra1, Rz1, Rq1, Rmax1, Sm1, t20(1), t50(1), t80(1) (in parallel 
with str), Ra2, Rz2, Rq2, Rmax2, Sm2, t20(2), t50(2), t80(2) (in 
parallel withsl); deviations from the planeness [13] – 
EFEmax, EFEa, EFEq and micro-hardness HV [11]. 
Methods of its measurement and calculation are specified 
in the works [14-15]. 
 
2.2 The interpretation of experimental data using 
statistical methods  

Taking into consideration the instability of 
grinding process and accidental nature of the formation of 
topography of tool surface, the observations should be 
reasonably shown in the form of sets: 
 

{ }, 1;30ivy v  .    (1) 

 
Sets (1) should be analyzed using statistic 

methods divided into parametric and non-parametric, in 
particular, into rank sets. The studies [6-8] serve as the 
characteristics of the unidimensional distribution of 
frequencies for (1): for the first direction -medium 

 iyiy , deviation standards (SD)i, ranges 

i
yyiR minmax  ; for the second direction – medians 

iy~ , quartile widths 0.75 0.25i i
QW y y  , covering 

50% of observations (1). The first frequency for both 
statistics characterizes the measure of position (reference 
value), and the following one characterize the measure of 
dispersion (precision). Each of these directions of statistics 
has its own “field” for the efficient use in engineering [6-
7]. 
 
2.3 The method of the performance of cluster analysis 

CA allows using all these measures of position 
and dispersion without additional analysis of observations 
in order to find out the uniformity of dispersions and 
normality of distributions. To enlarge the databases each 
object is estimated by five homogeneous frequency 

distributions ( 5;1q ): by two measures of position -

 iyiy and iy~ ; by three measures of dispersion – (SD, 

R, QW)i – for each steel 6;1i  and parameter of surface 

topography 20;1j . Thus, every object in the research is 

presented by the features in total 100205  jqN . 

When realizing CA sets  iNGG  , 6;1i , 

20;1N  should be divided into 1C  clusters (subsets) 

for the reasons that every object iNG  belongs to the one 

and the only subset, and objects included in different 
clusters were in their general populations. Division into 

clusters shall satisfy some condition of optimality 
reflecting the level of desirability. They are called 
objective functions that approach to a minimum at some 
set of restrictions.  

The method of clusterization includes the 
following stages performed sequentially: data 
standardization, determination of the distances between 
objects, determination of the distances between clusters. 
 
2.4 Standardization (normalization) of variables 
(features).  

Features can be reflected in different parameters 
and units. In such case, it is not possible to express the 
distance between them. They should be transformed into 
the non-dimensional values [3-4]. The program uses the 
transformation of the following type: 
 

  /yyz       (2) 

 
where y ,  – average and root-mean-square deviation of 

y  correspondingly. 

 
2.5 A search of distance (metrics) between objects  

In CA, for the qualitative estimation of similarity, 
the notion of metrics (distance) is introduced. The 
similarity of the classified objects is determined depending 
upon the metric distance between them. Thus, the 

distances between the pairs of vectors d( iy , jy ) can be 

presented in the form of the matrix of distances: 
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The distance between objects is called an 

absolute value that corresponds to the axioms: 0ijd , 

jidijd   and icdjcdijd  . 

 
The main methods of determination of the 

distance between the objects are the following: linear, 
Euclidean, Euclidean square, Minkowskian generalized 
degree distance, Chebyshev distance and Manhattan 
distance (distances of city blocks). In this research, we 
used Euclidean distance and Manhattan distance because 
they showed itself the most powerful [3-5]. 

Euclidean distance is the most popular metrics in 
CA and represents a geometric distance in 
multidimensional space. Geometrically it unifies better the 
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objects in globular clusters and it is defined by the 
equation: 
 

  2/1

1

2




 



j

k kjykiyEijd .   (4) 

 
Manhattan distance (distances of city blocks) is 

calculated as an average of differences according to 
coordinates: 
 

  



j

k kjykiyjyiyМd
1

, .   (5) 

 
In most cases (5), it leads to the results according 

to (4). However, for it, the impact of some runs is 
decreasing in comparison with (4) because the coordinates 
are not squared. 

Hierarchical algorithms of CA can be of two 
types - agglomerative and divisional. In agglomerative 
procedures, the initial stage is division, consisting of 
nsimplex classes, and final stage - consisting of the same 
class; in division algorithm, it is vice versa. The principle 
of work of hierarchical agglomerative (divisional) 
algorithms consists in the sequential unification (division) 
of groups of elements, i.e. in the creation of the 
hierarchical structure of classes. Usually, such 
classification is presented in the form of a dendrogram, i.e. 
a graph reflecting the sequential unification of two clusters 
into one specifying the distance between them. 
 
2.6 The distance between clusters 

At the first stage, when every object is a single 
cluster, distances between these objects are determined by 
the selected measure. However, when several objects are 
connected together, the question arises of how to 
determine the distance between the clusters. In other 
words, there is a rule of union or the connection of two 
clusters. 

There are many methods of the union of clusters: 
distance of the “nearest neighbor” (single connection), a 

distance of “remote neighbor” (complete connection), 
unweighted pairwise average distance, weighted pairwise 
average distance, unweighted centroid method, weighted 
centroid method (median) and Ward’s method [3-5]. 

In this research, two methods to determine the 
distance between the clusters are used: unweighted 
pairwise average distance and Ward’s method.  

In the method of unweighted pairwise average, 
the distance between two clusters is calculated as an 
average distance between all pairs of objects in them. The 
method is efficient when the objects actually form various 
groves. However, it works equally well in extensive (chain 
type) clusters. In Ward’s method intragroup sum of 
squares of deviations was used as an objective function, 
that is, the sum of squares of distances between each point 
(objects) and an average of the cluster containing this 
object. At each stage, such two clusters are united, and 
they lead to the minimal increase of objective function, 
that is, the intragroup sum of squares (SS). This method 
was directed to the union of close located clusters. 

The research uses two methods of determination 
of the distance of clusters at the classification of 
machinability groups of tool materials. Then it is 
necessary to reveal which one suits for classification of 
ground tools. 
 
3. RESULTS AND DISCUSSIONS 

Quality parameters of parts are measured in 
different units: in µm for roughness and macro deviations; 
in percent for relative bearing length and in MPa for 
micro-hardness. Normalization of its dimensionality was 
carried out using the tool “Standardization” in program 
package Statistica: Open data file  Data  
Standardize. After activation of line “Standardize”, the 
box appears on the screen of PC for setting the parameters 
of data normalization: variables – all 10 features are 
selected; observations- all 6 materials are selected. 
Obtained normalized features according to (2) for HSSP 

2;1i  are shown in full in Table-1. 
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Table-1. Normalized features for HSSP 2;1i . 
 

Feature 

20;1j  

Observable object 

W9Co5 W9Mo4Co8 

y  y~  SD R QW y  y~  SD R QW 

Ra1 0.89 0.97 -0.24 -0.56 0.82 -0.19 0.07 0.00 0.56 -0.41 

Rz1 0.04 0.22 -0.39 -0.63 -0.95 -0.52 -0.39 -0.74 -1.12 -0.38 

Rq1 0.74 0.93 -0.53 -0.50 0.00 -0.15 -0.27 -0.04 0.00 0.00 

Rmax1 0.56 0.92 -0.42 -0.24 1.33 -0.27 -0.09 -0.41 -0.90 0.44 

Sm1 1.21 1.30 -0.07 -0.43 1.43 0.90 0.68 1.90 1.90 0.10 

t20(1) 1.30 1.25 0.63 1.03 -0.84 0.53 0.71 1.01 1.00 0.93 

t50(1) 1.12 1.25 -0.04 -0.58 0.38 0.18 0.32 1.17 1.50 0.35 

t80(1) 0.15 0.58 0.73 0.10 1.08 -0.23 -0.58 -0.51 -0.87 0.52 

Ra2 -0.22 -0.41 -0.01 0.44 -0.41 -0.37 -0.41 1.16 1.11 -0.41 

Rz2 -0.28 0.63 -0.33 -0.19 -0.32 -0.38 -1.63 1.22 0.73 0.65 

Rq2 -0.30 0.65 -0.48 -0.46 0.41 -0.22 -1.29 1.08 0.46 0.41 

Rmax2 -0.21 0.29 -0.55 -0.72 -0.10 -0.04 -1.17 1.08 0.95 1.64 

Sm2 0.35 0.05 1.65 1.77 0.42 -0.76 -0.53 -1.00 -0.54 -2.00 

t20(2) -0.91 -0.85 -1.29 -0.90 -0.38 -0.36 -0.50 -0.30 -0.80 -0.17 

t50(2) -0.54 -0.60 1.00 -0.17 0.57 -0.53 -0.47 -0.19 -0.40 0.20 

t80(2) -0.58 -0.21 1.29 1.06 1.46 -0.26 -0.15 0.95 1.05 0.44 

EFEmax 0.47 0.36 0.01 0.42 -0.65 0.08 0.36 0.34 0.78 -0.65 

EFEa -0.49 -0.39 0.07 0.57 -0.27 0.33 0.47 0.46 1.17 -1.15 

EFEq -0.30 -0.24 0.00 0.66 -0.35 0.25 0.32 0.59 1.19 -1.15 

HV 0.10 0.07 0.99 1.36 0.44 1.74 1.74 0.03 0.16 1.26 

 

For plates W18, W6Mo5 ( 4;3i ) and 

W12V3Co10Mo3, Cr12 ( 6;5i ) normalized features 

aiming to decrease the data volume are given in the Tables 
2, 3 in a short variant for the most significant parameters 
of surface topography. 

 

Table-2. Selected normalized features at grinding 4;3i . 
 

Feature 

Observable object 

W18 (i=3) W6Mo5(i=4) 

y  y~  SD R QW y  y~  SD R QW 

Ra1 0.24 0.07 -0.52 -0.56 -1.63 -0.26 -0.37 0.32 0.00 0.82 

Rmax1 0.44 0.61 0.07 0.26 0.15 -0.23 -0.09 -0.14 0.10 0.44 

Sm1 -1.10 -1.32 -0.35 -0.13 -0.94 0.35 0.35 0.06 0.17 0.87 

Sm2 -0.48 -0.51 -0.46 -0.77 0.48 -0.23 -0.56 0.26 0.24 0.70 

EFEmax -1.46 -1.49 -0.94 -1.02 -0.65 -0.85 -0.87 -1.34 -1.38 -0.65 

HV 0.45 0.47 -0.13 -0.51 0.69 -0.72 -0.71 -0.92 -0.90 -0.10 
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Table-3. Selected normalized features at grinding 6;5i . 
 

Feature 

Observable object 

W12V3Co10Mo3 (i=5) Cr12 (i=6) 

y  y~  SD R QW y  y~  SD R QW 

Ra1 -1.73 -1.72 -1.27 -1.12 -0.41 1.03 0.97 1.72 1.68 0.82 

Rmax1 -1.71 -1.87 -1.00 -0.98 -1.03 1.21 0.53 1.90 1.76 -1.33 

Sm1 -0.20 -0.01 -0.63 -0.72 -0.38 -1.16 -1.00 -0.92 -0.80 -1.07 

Sm2 -0.75 -0.44 -0.90 -0.94 0.05 1.86 1.99 0.44 0.23 0.35 

EFEmax 0.45 0.36 1.39 1.14 1.29 1.32 1.28 0.53 0.06 1.29 

HV -0.78 -0.87 -1.23 -1.07 -1.37 -0.80 -0.71 1.27 0.95 -0.92 

 
According to (4), (5) the distances are obtained (dE, dM)ij of all lines and columns of Table-3, that are shown in the Tables 
4, 5 correspondingly. 
 

Table-4. Matrix of Euclidean distance according to (4). 
 

Observer W9Co5 W9Mo4Co8 W18 W6Mo5 W12V3Co10Mo3 Cr12 

W9Co5 0.0 10.3 12.9 9.1 14.2 16.0 

W9Mo4Co8 10.3 0.0 13.2 11.6 14.6 16.3 

W18 12.9 13.2 0.0 9.5 15.1 16.4 

W6Mo5 9.1 11.6 9.5 0.0 13.0 15.7 

W12W3Co10Mo3 14.2 14.6 15.1 15.1 0.0 20.0 

Cr12 16.0 16.3 16.4 16.4 20.0 0.0 

 
Table-5. Matrix of Manhattan distance according to (5). 

 

Observer W9Co5 W9Mo4Co8 W18 W6Mo5 W12V3Co10Mo3 Cr12 

W9Co5 0 81 102 70 109 136 

W9Mo4Co8 81 0 112 88 117 143 

W18 102 112 0 68 127 137 

W6Mo5 70 88 68 0 101 136 

W12W3Co10Mo3 109 117 127 101 0 180 

Cr12 136 143 137 136 180 0 

 
Distances (4) and (5) obtained in the Tables 4, 5 

are subjected to clusterization, and for this,we call up the 
module “cluster analysis” in the program via menu: 
Analysis Multidimensional explorative analysis   
Cluster analysis. Then we choose the method of 
clusterization- hierarchical classification. Then 
clusterization dialogue box by means of hierarchical 
method with characteristics appears: variable - all features 
for analysis; Data file – initial data; objects – observations 
(lines); rule of union -unweighted pairwise average or 
Ward’s method; proximity measure - Euclidean distance 
or Manhattan distance; deletion of missed data - 
replacement of average or line-by-line deletion. 

After setting of all necessary parameters for 
clusterization, click OK and the box appears with the 
results of classification. In the program at the first stage, 
we used the vertical dendrogram (Figures 1, 2) and 
schemes of the union (Tables 6, 7). In the Figures 1, 2 
along the abscissa axis there are observed objects - code of 

steels 6;1i , and along the ordinate axis, there are 

distances of unions. In the Tables 6, 7 the first column 
contains the distances for the corresponding clusters, the 
latter is the coefficients of unions (Ku) for two sequential 
clusters. Each line in the table characterizes the content of 
cluster of the performed stage. 
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Figure-1. Vertical dendrogram of observed objects, obtained by 
Ward’s method and (4). 

 
Table-6. Scheme of the union. Manhattan distance. 

 

Distance 
of 

clusters 

Ward’s method 

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Ku 

68.42 W18 W6Mo5     1.00 

80.94 W9Co5 W9Mo4Co8     1.18 

111.39 W18 W6Mo5 W9Co5 
W9Mo4Co

8 
  1.38 

129.69 W9Co5 W9Mo4Co8 W18 W6Mo5 W12V3Co10Mo3  1.16 

179.37 W9Co5 W9Mo4Co8 W18 W6Mo5 W12V3Co10Mo3 Cr12 1.38 

Method of unweighted pairwise average 

68.42 W18 W6Mo5     1.00 

80.94 W9Co5 W9Mo4Co8     1.18 

93.04 W18 W6Mo5 W9Co5 
W9Mo4Co

8 
  1.15 

113.65 W9Co5 W9Mo4Co8 W18 W6Mo5 W12V3Co10Mo3  1.22 

146.67 W9Co5 W9Mo4Co8 W18 W6Mo5 W12V3Co10Mo3 Cr12 1.29 

 
Figure-1 shows a dendrogram of observed objects 

when using Ward’s method and Manhattan distance. It 
illustrates that at the first stage W18 was united with 
W6Mo5, and W9Co5 was united with W9Mo4Co8. The 
distances between them characterize the deviation of 
clusters. In Figure-1 and in Table-6, it is expressed by the 
values: 68.42 – for W18, W6Mo5 and 80.94 – for W9Co5, 

W9Mo4Co8. At the final stage, all steels 6;1i  with the 

distance 179.37 come into the cluster. When there are two 

clusters (k = 2) the first cluster will include steels 5;1i , 

and the second one will include Cr12 ( 6i ). At k = 3, 
the first cluster will be formed by steels W18, W6Mo5, 
W9Co5, W9Mo4Co8 with the union distance 111.39; the 
second cluster will be formed by steel W12V3Co10Mo3 
(distance 129.69), the third one – Cr12 (distance 179.37). 

When using the method of unweighted pairwise 
average and measure of Manhattan distance the division of 
steels into clusters was the same (Table-6) but the 
distances between them and coefficients Ku were changed. 
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Figure-2. Vertical dendrogram of observed objects, 
obtained by the method of unweighted pairwise 

average and (5). 
 

As seen from the Figure-2 and the Table-7, for 
Euclidean distance and method of unweighted pairwise 
average the smallest distance dE(W9Co5, W6Mo5) = 9.1 is 
between the steels W9Co5 and W6Mo5, and the biggest 
distance is 16.88 between the steels W12V3Co10Mo3 and 
Cr12. Certainly on the dendrogram and the scheme of the 
union at the first stage steels W9Co5 and W6Mo5 were in 
the same cluster with the distance of cluster 9.11. The 
obtained cluster differs from the similar cluster at the 
scheme of union “Manhattan distance” in which the high-
speed cutting plates W18 and W6Mo5 were included 
earlier. At the next stage, W9Mo4Co8 with W9Co5, 
W6Mo5 (Table 7) were united into one group because the 
distances between them differ insignificantly (Table-4): 
dE(W9Co5,W9Mo4Co8) = 10.3 
anddE(W6Mo5,W9Mo4Co8) =11.6, etc. 

 
Table-7. Scheme of unions. Euclidean distance. 

 

Ward’s method 

Distance of 
clusters 

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Ku 

9.11 W9Co5 W6Mo5     1.00 

11.56 W9Co5 W6Mo5 W9Mo4Co8    1.27 

12.65 W9Co5 W6Mo5 W9Mo4Co8 W18   1.09 

16.05 W9Co5 W6Mo5 W9Mo4Co8 W18 W12V3Co10Mo3  1.27 

19.91 W9Co5 W6Mo5 W9Mo4Co8 W18 W12V3Co10Mo3 Cr12 1.24 

Method of unweighted pairwise average 

9.11 W9Co5 W6Mo5     1.00 

10.95 W9Co5 W6Mo5 W9Mo4Co8    1.20 

11.88 W9Co5 W6Mo5 W9Mo4Co8 W18   1.08 

14.19 W9Co5 W6Mo5 W9Mo4Co8 W18 W12V3Co10Mo3  1.19 

16.88 W9Co5 W6Mo5 W9Mo4Co8 W18 W12V3Co10Mo3 Cr12 1.19 

 
As seen from the Table-7, Ward’s method 

showed the identical results in comparison with the 
method of unweighted pairwise average when dividing the 
steels into clusters with the close values of union 
coefficient. It is preferable to have two –three clusters 
because if there are more clusters the visualization of 
clusterization will be lost. 

At the second stage, we used the descriptive 
statistics. The Table-8 shows that the observed objects 
W6Mo5, W9Co5, W18 and W9Mo4Co8 have close varied 
ranges of normalized features, and therefore they were 
grouped at the first or at the second stage (in the first or in 
the second cluster). 
 
 
 
 
 

Table-8.Normalizeddescriptivestatistics. 
 

Steels ( 6;1i ) Average 
Standard 
deviation 

W9Co5 (1) 0.179643 0.701927 

W9Mo4Co8 (2) 0.132872 0.801630 

W18 (3) -0.374898 0.761789 

W6Mo5 (4) -0.274551 0.547314 

W12V3Co10Mo3 
(5) 

-0.479523 0.978490 

Cr12 (6) 0.816457 0.950650 

 
To estimate the results of CA, we will decrease 

the total number of features (N=100) up to three, they are 
the most significant in the increase of the reliability of 
parts: Ra1, EFEmax and HV (Table 9). In brackets for the 
parameter Ra1 there are categorical values (CV) [16]. 
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Similarly to the value of deviation from planeness, there is 
accuracy quality class TFE [17]. Thus, the clusters were 
obtained: the first cluster – W18, W6Mo5, W9Co5 and 

W9Mo4Co8; the second cluster - W12V3Co10Mo3 and 
the third one - Cr12. 

 
Table-9. Group average values of parameters Ra1, EFEmax and HV. 

 

Cluster 3;1k  Ra1, µm EFEmax, µm HV, MPa 

1 0.0567 (0.063) 13.91 (TFE7) 7,572.325 

2 0.0390 (0.040) 15.37(TFE7) 6,417.04 

3 0.0647 (0.080) 16.80(TFE8) 6,395.96 

Note: Cluster: 1 – W18, W6Mo5, W9Co5, W9Mo4Co8; 2 – W12V3Co10Mo3; 3 – Cr12. 

 
Integral estimation of grindability of steels 

6;1i  according to clusters is difficult to make, and we 

will make it differentially for every topography parameter. 
HSSP W12V3Co10Mo3 showed the smallest values of 
roughness altitudes (CV) = 0.04 µm, the second position 
takes cluster 1 (HSSP W18, W6Mo5, W9Co5, 
W9Mo4Co8) -Ra1 0.0567 (0.063). The third cluster for die 
steel Cr12 is characterized by Ra1 = 0.0647(0.08). Clusters 
1 and 2 are in the range of the same set TFE7 according to 
the deviations from planeness, but the observed values 
EFEmax= 13.91 µm for steels of the cluster 1 (W18, 
W6Mo5, W9Co5, W9Mo4Co8) are 1.1 times lower than 
for HSSP W12V3Co10Mo3. According to micro-hardness 
HRC, they are in the following decreasing sequence: 2; 1; 
3. According to HV measured in the samples after 
grinding, the sequence is the following: 1; 2; 3. Grinding 
of steel W12V3Co10Mo3 is accompanied by the intensive 
heat generation, burns and decrease of micro-hardness. 
Thus, according to two parameters of surface topography 
(EFEmax, HV) undisputed leader is the cluster 1 (HSSP- 
W18, W6Mo5, W9Co5, W9Mo4Co8). 

Steel W12V3Co10Mo3 differs by its lower 
machinability by grinding. Die steel for cold forming Cr12 
completes the sequence of the researched materials.  
 
4. CONCLUSIONS 

a) The method of grouping or classifying of 
materials is presented using the hierarchical cluster 
analysis. Its positive features are: low labor input, 
environmental safety, possibility to use in any working 
conditions and efficiency when processing of large 
databases.  

b) It was revealed that when classifying the 
groups of the machinability of tool materials by cluster 
analysis the proximity measure of Manhattan distance 
provided more accurate result in comparison with the 
proximity measure of Euclidean distance and other more 
reliable estimations. 

c) In this research, it was accepted reasonable to 
select 3 clusters: the first cluster for HSSP W18, W6Mo5, 
W9Co5 and W9Mo4Co8; the second cluster for HSSP 
W12V3Co10Mo3; the third cluster for parts of dies Cr12. 
Grindability estimation between the clusters requires 
additional research, for instance, using the statistic 
methods. 
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