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ABSTRACT 

The upper asphaltene precipitation envelope is obtained from a developed model with artificial neural networks 

called "Neuross-Asph". This was achieved by training with 58 samples collected from different literature sources and 

analysing the information before being introduced into the network. The model was constructed in three stages: the first 

one consisted of grouping the data according to asphaltene onset pressure and saturation pressure ratio (AOP/Pb) using a 

self-organizing maps (SOM) network. In the second, a subcategorization of information was made; this was based on the 

chemical composition and SARA analysis using SOM networks. The last stage was designed with a feed-forward network 

of backpropagation to predict the onset pressures by means of the association with saturation pressure. The main advantage 

of the proposed model is to predict the asphaltene onset pressure (AOP), requiring little and easily accessible data as input 

parameters. In reviewing the data output satisfactory results were obtained from the developed tool since it is considered 

that the model possesses a good design, since it identified the relationships that have more influence on the precipitation of 

asphaltenes. 

 
Keywords: onset pressure, asphaltene deposition, artificial neural networks, self-organizing maps, feed-forward. 

 

1. INTRODUCTION 

Asphaltenes precipitation represents one of the 

main problems in the oil industry, its adverse effects 

reflect in almost all areas of the production process. 

Studies realized to understand this phenomenon and 

consequences that it generates have led to propose models 

that allow characterizing and quantifyingthe precipitation 

of asphaltenes. 

So far, the principal models developed for 

asphaltene precipitation are: colloidal thermodynamic 

model, polymer solution model, regular solution model, 

solid model, PC- Salt model, micellization model and 

numerical model. The latter has the greatest interest and is 

under constant development since determination of 

asphaltene onset pressure (AOP), precipitation envelope 

(ADE) and/or represent the curve weight percent of 

asphaltene-solid precipitates (% wt) are  current tasks that 

exclude experimental procedures involving time and cost 

variables that although they are theoretically well 

supported, on a practical basis generate uncertainties.  

Among the latest models proposed for the given 

case are found: numeric, empirical equations, intelligent 

systems and artificial neural networks (ANN). As time 

goes by, the ANNs have demonstrated their potential in 

the development of outstanding research, not only in the 

industry of hydrocarbons but in almost all human labours, 

for this motive this article focuses in the use of this tool. 

The first research found in the literature was 

developed by Mohammadi and Richon (2008) using a 

mathematical model based on the Feed forward Technique 

Optimized with the modified Levenberg-Marquardt (LM) 

algorithm. To model the onset of precipitation of 

asphaltenes dissolved in a solvent + precipitated solution.  

Later, Abediniet al. (2010) developed an ANN model to 

predict and simulate the amount of asphaltenes 

precipitated depending on the dilution ratio, the solvent 

molecular weight and temperature, using backpropagation 

(BP) and Levenberg-Marquardt (LM) algorithms. 

Ahmadi (2011) developed a hybrid model for the 

prediction of asphaltene precipitation based on a 

combination of feed-forward and unified particle swarm 

optimization (UPSO) networks to decide the initial weight 

for the network. Later, Ahmadiet al. (2011) developed a 

similar model based on particle swarm optimization (PSO) 

and BP. Zendehboudia et al. (2013) joined the ANN with 

the imperialist competitive algorithm and PSO to estimate 

the precipitation and deposition of asphaltenes with and 

without C02 injection. 

Hemmati-Sarapardeh et al. (2013) developed a 

model for asphaltene precipitation, based on an intelligent 

system named least squares support vector machine 

(LSSVM). Kamari et al. (2014) also posed a model based 

on LSSVM to determine the onset pressure from a few 

parameters: operating conditions, composition and 

characterization of crude oil. 

This field of research delivers a considerable 

contribution to multiple researches developed on the 

subject. The presented model, named “Neuross-Asph”, 
predicts the pressures that form the upper envelope of 

asphaltene precipitation of oil reservoirs with ANNs; 

requiring a small amount of easily accessible data for 

operation, and with predictions of a satisfactory degree of 

reliability. 

 

2. METHODOLOGY 

With the purpose of presenting an efficient model 

to determine the AOP was necessary to research the 

variables that have most influence on the mentioned 

phenomenon. So far, all former studies coincide with 

pressure changes, temperature and composition have direct 

influence on the precipitation of asphaltenes. Thus, the 

search for information took into consideration the 

following parameters: 
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 Oil composition in molar percent (%mol). 

 SARA analysis in weight percent (%wt). 

 Pb in Megapascals (Mpa). 

 AOP in Megapascals (Mpa) at different temperatures 

(T) in degrees Kelvin (K). 

The collected data consisted on 58 samples (54 

from literature and 4 from Colombian oil). 

The oil composition was classified in 10 components: N2, 

CO2, H2S, C1, C2, C3, C4, C5, C6 y C7+. 

From the analysis information, a temperature 

range was established 294 K - 423 K (69 °F - 302 °F) 

because the majority of samples did not contain data at 

low temperatures (<315 K).In the majority of cases, the 

reservoir temperature worldwide is above 294K. 

Since the success of the ANN depends upon the 

representativeness of information used for training, it was 

necessary to perform two procedures before building the 

network to achieve onset and saturation pressure data in all 

of the temperature range established. For the case of Pb, 

commercial software was used to generate the envelope 

for vapour-liquid equilibrium. In the case of the AOP, a 

fitting data commercial software was used, employing 

equations that best represent the behavior for AOP vs 

T(R
2≅1 and creates the curve according to the physical 

phenomenon).Figure-1 shows an example of processing 

described. 

The next step was to identify the characteristics, 

relationships, tendencies and/or correlations between the 

statics (Composition and SARA analysis) and dynamics 

(AOP and Pb) variables, throughout the temperature range 

established.After several attempts, two relationships were 

found: the derivative average of AOP/Pb respect to T 

expressed by Equation 1, and the average AOP/Pb ratio 

expressed by Equation 2 

 

ሺ݉̅௞ሻௗ = ∑ �ቀ�ೀುು� ቁ���݊ ሺͳሻ 

 ሺ݉̅௞ሻ௤ = ∑ ቀ�ை௉௉௕ ቁ�݊ ሺʹሻ 

 

where 

i corresponds to i-th temperature values of the range 

established (294 K - 423 K). 

n = total number of temperature values evaluated. 

k = total number of analysed samples. ሺ݉̅௞ሻௗand ሺ݉̅௞ሻ௤is the average of the derivative and the 

quotient, respectively. 

 

The samples with similar ሺ݉̅௞ሻௗ and ሺ݉̅௞ሻ௤ ratios 

group similar compositions. In this way was possible to 

demonstrate that Pb is the variable that givemost 

conditions to the behaviour of asphaltene. 

3. DESIGN AND TRAINING FOR NEUROSS-ASPH  

MODEL 

Basically, the way the model could determine 

AOPs for new wells is through a system that “learns” the 
particularity of the relationships between the chemical 

compositions, SARA analysis, Pband AOP of 

representative sample wells, in this way, to obtain a 

knowledgebase of the dynamics of the phenomenon. 

 

 
 

 
 

Figure-1. Example of the information entered to 

the network. 

 

The base of knowledge-learning is implemented 

with multiple topologies of ANN, in virtue to their 

characteristics to learn, classify and generalize datasets 

whose relations correspond to the description or associate 

properties of dynamic systems, who in this particular case, 

is the behaviour of asphaltene precipitation and the change 

in thermodynamic properties. Commercial mathematical 

software was used to implement the model.Figure-

2,illustrates all the training stages for the Neuross-Asph 

model. 

The main processes involved in the design and 

training of the model are the following. 

 

3.1. Information processing 

To properly describe the dynamics of the process 

and avoiding the generation column vectors of many 

components, a resolution of 1 K is applied to represent the 

Pb and AOP in the range of temperature established, 

obtaining matrices of dimension 129xnm (where mn is the 

amount of samples). 
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3.2. First stage: Categorization according to average  

AOP/Pb 

During the information analysis process, it was 

established that Pb through the AOP/Pbratio is the variable 

that connects the AOP (variable dynamic because it 

depends directly to the temperature) with the composition 

and SARA analysis (static variables); therefore, it was 

determined that this relationship is the first design 

criterion of model. For this, a self-organizing map (SOM) 

network was used. That allows discovering through 

unsupervised competitive learning, common features, 

regularities, correlations or categories in the input data, 

and incorporates them into its internal structure of 

connections, Marin (2013). The training vector obtained 

from the AOP/Pb ratio allowed through SOM_r to group 

samples with similar averages represented by an output 

vector with a 1xnm dimension which is used to “map” the 
chemical composition, the SARA analysis, Pb and AOP. 

For practical purposes, the chemical composition and 

SARA analysis were referenced as chemical composition. 

 

3.3. Second stage: Subcategorization according to  

composition 

In order to optimize the training, to make it 

efficient and accurate for grouping samples that share 

common characteristics, it was decided to design an 

additional categorization to group similar chemical 

compositions based on the outputs of the SOM_r 

according average AOP/Pb. The strategy used involved 

applying SOMs to each of the categories generated in the 

first stage (these are the SOM_c shown in Figure-2). Thus 

1xCn dimension subcategories are obtained which are 

used to “map" the groups chemical composition, AOP and 

Pb depending on the chemical composition. 

 

3.4. Third stage: Association between Pb and AOP 

The objective is to “learn” the relationship 
between the Pb and AOP based on previous 

subcategorizations, where the Pb and AOP share similar 

chemical composition and average AOP/Pb. For this a 

neural network of Feed-forward backpropagation (FFB) 

 
 

was used, which is the ANN most studied by the scientific 

community, receives multivariable information, processes 

it and generates an answer resulting from the supervised 

learning in which the weights of the connections are 

modified to achieve outputs with minimum error, Vasquez 

(2014). The topology of each ANN has 10 neurons with 

129 inputs and 129 outputs due to the matrix dimensions 

of the subcategory correspondent to Pb (witch act as 

examples for training) and AOP (that act as objectives or 

targets). 

 

4. SIMULATION 

The simulation consists of verifying the operation 

of the model built, in which a new sample is introduced 

Figure-2. Structural representation of the model. 
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(with all their properties), corresponding to the input space 

to obtain an answer from the model, that is to say, predicts 

the upper envelope of asphaltene precipitation. This 

process is illustrated in Figure-3. The processes at this 

stage are described below. 

 

4.1 Coupling for the chemical composition 

The composition of the sample whose behaviour 

of asphaltenes is to be predicted is entered. The input 

vector for the chemical composition is 14x1 according to 

the vectors used in the training. To locate the category that 

corresponds the entered composition, the training 

SOM_cis used. 

The entered chemical composition is simulated in 

all the SOM_c and these compete with each other, 

ordering the neurons according to their coupling, in the 

end the SOMs are obtained with their respective winning 

neuron associated with the input composition. 

 

4.2 Coupling ratio of the AOP/Pb relation 

During the training process, the relation AOP/Pb 

corresponded to the initial category; nevertheless, in the 

simulation is not possible to make a direct couple in this 

relation because the AOP is unknown, this will be 

predicted. In this phase the chemical composition is 

implied within the SOM_c which is the result of the initial 

SOM_r (AOP/Pb relation). 

 

4.3 Feed-forward network selection 

After the coupling of the new composition with 

the subcategorization given by the SOM_c associated to 

the input composition through the subcategory vector, the 

trained FFB network is selected with the corresponding 

subcategories directed by the strongest neuron and its 

neighbours. This is shown in Figure-3, where the 

subcategory 2 vector selects the FFB whose targets are 

AOP associated with the chemical composition of input. 

 

4.4 AOP prediction 

It is realized in two phases, the first carries out 

the association between the AOP (which is the answer 

from the SOM, of chemical composition and said 

 

 
Figure-3. Scheme of the simulation process. 

 

dimension is 129x1), and the Pb of the evaluated samples 

that is entered in this phase which should be processed 

previously so that its dimensions to be 129x1, process that 

was described inhe methodology. The second phase 

corresponds to the prediction of the AOP, through the 

input of the training FFB network. 

5. RESULTS 

To evaluate the results of the proposed model, it 

was calculated for each case, the average absolute error 

(AAE) using Equation-1, which consists on the average of 

the absolute difference calculated between the real value 

and the value calculated. 
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 ��� = ͳ݊ ∑|∆��|௡
�=1 × ͳͲͲ                                                      ሺͳሻ 

 

To compare punctual results, the error percent 

was estimated through Ecuación-2 

 %����� = [�௘�௣௘௥�௠௘௡௧௔௟ − �௖௔௟௖௨௟௔௧௘ௗ�௘�௣௘௥�௠௘௡௧௔௟ ]   × ͳͲͲ                      ሺʹሻ 
Where x are the values of AOP. 

 

5.1 Validation of the model with the input information 

In order to verify the degree of accuracy in the 

results obtained with the model, it was decided to compare 

the outputs with experimental AOP of the 58 samples with 

which was using in the training. Table-1 presents the 

comparative for 12 of the 58 samples at different 

temperatures. 

 

Table-1. Comparison of experimental data and predicted 

with the Neuross-Asph model. 
 

Sample 
Temp. 

(K) 

AOP 

Exp. 

(Mpa) 

AOP 

Calc. 

(Mpa) 
%Error AAE 

1 300 73.27 73.27 0 0 

6 300 57.64 57.64 0 0 

10 300 83.76 83.76 0 0 

18 334 31.91 31.91 0 0 

21 358 18.35 18.35 0 0 

27 358 22.00 22.00 0 0 

30 358 8.67 8.67 0 0 

36 379 34.00 34.00 0 0 

40 379 44.50 44.50 0 0 

45 397 28.19 28.19 0 0 

50 397 3.36 3.36 0 0 

51 413 83.11 83.11 0 0 

 

It was observed that the Neuross-Asph model 

worked perfectly with the information entered for  training 

(chemical composition and Pb).These results allow 

inferring that the categorization, training and simulation 

were adequate. The categorization with the two-stage 

SOM was convenient because it allowed the created 

neurons to group samples correctly that relate the 

saturation pressure, the onset pressure, chemical 

composition and SARA analysis. 

 

5.2 Validation of the model with a new sample 

To verify the results of the model during the 

simulation process, it was decided to train the network 

with 56 samples and simulate it with the remaining two 

samples. It’s valid to clarify that these two samples were 

not entered during the training process, the results will 

correspond to the predictions. Figures-4 and 5 show the 

output of the network for simulated samples. 

 

 
 

Figure-4. Network Prediction for sample 14. 

 

 
 

Figure-5. Network Prediction for sample 40. 

 

As shown in Figures-4 and 5, the prediction with 

Neuross-Asph model is satisfactory since most of the 

predicted points are closer to the experimental values and 

the behaviour of the graph corresponds to the physical 

phenomenon that decreasing temperature, the pressure 

tends to increase. Table-2 presents the results of some 

AOP predicted at different temperatures. 
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Table-2.AOP predicted at different temperatures for 14 

and 40 samples. 
 

Sample 
Temp. 

(K) 

AOP 

exp. 

(Mpa) 

AOP 

Predicted 

(Mpa) 

% 

Error 

14 

301.3 90.20 91.53 1.5 

309.3 81.89 82.42 0.6 

319.3 72.85 72.86 0.0 

330.3 64.47 68.45 6.2 

346.3 54.81 52.04 5.1 

365.3 46.64 49.23 5.6 

400.3 38.96 38.73 0.6 

40 

301.3 100.93 102.82 1.9 

309.3 91.97 93.87 2.1 

319.3 81.90 83.80 2.3 

330.3 72.20 74.09 2.6 

346.3 60.48 62.38 3.1 

365.3 49.96 51.86 3.8 

400.3 39.21 41.11 4.8 

 

The results show that the Neuross-Asph model 

presents deviations below 6.2%. The AAE for samples 14 

and 40 was 2.4 Mpa and 1.9Mpa respectively. 

 

5.3 Comparison with other numerical models 

Fahim (2007) developed a model to estimate the 

envelope of asphaltene precipitation based on empirical 

equations, with 33 samples of oil mainly from the Middle 

East. 

Del Rio, Ramirez-Jaramillo and Lira (2008) 

proposed equations to predict the AOP based on a method 

of least squares regression from 11 samples of oil from 

Mexico. 

By applying previous models to the 58 samples, it 

shows that the error rates are very high. Table-3 presents 

the deviation values giving 70% of difference between 

calculated and experimental values for Fahim Model and 

more than 100% for Del Rioet al.Model, while the 

Neuross-Asph model error is 0 %. 

These results show that the use of few samples to 

construct the models of discussion considerably limits the 

range of application thereof. Also trying to characterize 

asphaltene linearly is a mistake, since it does not represent 

the physical behaviour of the phenomenon; so it varies, 

then it is dynamic and depends upon many factors. 

 

5.4 Model restrictions 

The limitations of the proposed model are based 

on the data used in its construction. To ensure greater 

confidence in the results it is recommended that the input 

data be in the ranges presented in Table-3. 

To achieve better performance from the model, it 

is necessary that the entered saturation pressures have a 

dimension of 129x1, which means that the set temperature 

range must have pressure data every 1 K. In addition, it is  

 

Table-3. Comparison of AOP calculated with Fahim, Del Rio et al. and Neuross-Asph models. 
 

 
 

Fahim 

Model

Del Rio et 

al . Model

Neuross-

Asph Model

Fahim 

Model

Del Rio et 

al . Model

Neuross-

Asph Model

Muestra 2 320 34,98 49,65 -17,09 34,98 41,92 148,87 0

Muestra 4 320 59,15 61,40 -18,25 59,15 3,80 130,86 0

Muestra 6 340 33,01 14,10 11,11 33,01 57,28 66,34 0

Muestra 7 320 40,79 68,09 11,82 40,79 66,90 71,03 0

Muestra 9 340 23,95 7,08 10,59 23,95 70,41 55,76 0

Muestra 10 400 53,54 52,81 28,28 53,54 1,37 47,18 0

Muestra 11 400 52,36 47,55 16,20 52,36 9,19 69,06 0

Muestra 17 380 38,26 20,65 12,60 38,26 46,02 67,06 0

Muestra 32 340 6,38 5,77 17,32 6,38 9,60 171,35 0

Muestra 33 340 33,91 41,96 14,91 33,91 23,72 56,04 0

Muestra 47 360 50,43 64,69 -5,26 50,43 28,29 110,43 0

Muestra 48 380 45,00 43,87 9,57 45,00 2,50 78,72 0

Muestra 49 360 37,03 35,21 10,08 37,03 4,92 72,77 0

Muestra 50 320 31,21 35,69 27,11 31,21 14,35 13,13 0

Muestra 52 380 50,34 50,30 121,40 50,34 0,08 141,16 0

Muestra 56 340 33,31 45,22 7,82 33,31 35,78 76,52 0

Muestra 57 320 62,39 63,57 290,64 62,39 1,90 365,86 0

Sample
Temperatu

re (K)

AOP 

experimen

tal (Mpa)

AOP predicted % Error
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recommended that saturation pressure data to be entered 

lies within the area formed by the data used in its 

construction; this is represented in Figure-3. 

 

Table-4. Variable ranges used for the creation of the 

Neuross-Asph model. 
 

Component 
Range 

Minimum Maximum 

N2 0.01 5.08 

CO2 0.01 32.58 

H2S 0 8.26 

C1 8.78 57.41 

C2 3.75 11.02 

C3 2.95 9.59 

C4 1.1 6.58 

C5 1.92 8.85 

C6 1.76 8.04 

C7+ 16.52 57.77 

SAT 26.88 75.56 

ARM 11.6 67.99 

RES 2.5 18.8 

ASF 0.17 16.3 

 

 
 

Figure-6. Region formed by the Pb used in the creation of 

the Neuross-Asph model. 

 

6. CONCLUSIONS 

 

a) The development of the Neuross-Asph model was 

achieved to calculate with a high degree of reliability 

the upper envelope of asphaltene precipitation without 

entering experimental AOP data, which has been a 

barrier for the use of other proposed models. 

b) The model developed is efficient, presents reliable 

results, ensures a wide application range and high 

degree of robustness since its base is ANN. 

c) One of the main advantages developed in the 

Neuross-Asph model is that only requires information 

that corresponding a few and easily access 

thermodynamic properties (chemical composition, 

SARA analysis and Pb). 

d) The Neuross-Asph model presents an excellent fit for 

the data that was used for training; the results also 

generate greater reliability than those obtained 

through the Fahim and Del Rioet al. models. 

e) To ensure reliability in the results, three conditions 

were established: the chemical composition and 

SARA analysis should be within the range set for the 

chemical composition and SARA analysis. The Pb 

must be entered for the set temperature range (294.3 

K-423.2K) and also be part of the defined region for 

Pb. 

f) A great success in building the model was to consider 

the most influential factors in the precipitation of 

asphaltenes. First, the grouping according to the 

AOP/Pb ratio, this allowed that the saturation pressure 

to be established as the dominant property in 

predicting the onset envelope pressures. The second 

factor is the composition as their degree of impact is 

indirect and complementary to the previous grouping. 

g) The categorization using the two SOM stageswas 

convenient because it allowed the neurons created to 

group samples correctly relating the Pb, the AOP, 

chemical composition and SARA analysis. 

h) Although advances in this area of study have been 

important, these have been limited because the 

required information is not easily accessible; 

quantification of some input variables has a high 

degree of uncertainty, a small number of existing 

experimental data, among others. 

 

ACKNOWLEDGEMENTS 

The authors thank research group COFA of the 

Universidad Surcolombiana and the CMG and Mathworks 

companies for their support during the development of this 

research. 

 

REFERENCES 

 

Abedini A., Ashoori S., Saki Y. 2010. Application of 

Neural Network Model for Prediction of Asphaltene 

Precipitation. Paper SPE 132760 Presented at the Trinidad 

and Tobago Energy Resources Conference held in Port of 

Spain, Trinidad. 

 

Ahmadi M. A. 2011. Neural Network Based Unified 

Particle Swarm Optimization for Prediction of Asphaltene 

Precipitation. Elsevier.314: 46-51. 

 

Del Rio J. M., Ramirez E., Lira C. 2009. Equations to 

Predict Precipitation Onset and Bubblepoint Pressures of 

Asphaltenic Reservoir Fluids. AIChE Journal. 55, no. 7. 

 

Fahim M. A. 2007. Empirical Equations for Estimating 

ADE of Crude Oils. Petroleum Science and Technology 

Journal. 25:949-965. 

7
1

8
0

8
9

9
8

1
0

7

1
1

6

1
2

5

1
3

4

1
4

3

1
5

2

1
6

1

1
7

0

1
7

9

1
8

8

1
9

7

2
0

6

2
1

5

2
2

4

2
3

3

2
4

2

2
5

1

2
6

0

2
6

9

2
7

8

2
8

7

2
9

6

0

1000

2000

3000

4000

5000

0

5

10

15

20

25

30

35

40

2
9

5

3
0

0

3
0

5

3
1

0

3
1

5

3
2

0

3
2

5

3
3

0

3
3

5

3
4

0

3
4

5

3
5

0

3
5

5

3
6

0

3
6

5

3
7

0

3
7

5

3
8

0

3
8

5

3
9

0

3
9

5

4
0

0

4
0

5

4
1

0

4
1

5

4
2

0

P
re

ss
u

re
 (

p
si

a
)

P
re

ss
u

re
 (

M
p

a
)

Temperature (K)

Temperature (°F)



                                    VOL. 11, NO. 21, NOVEMBER 2016                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                             12742 

Hemmati A., Alipour R., Marandb Y., Naserib A., 

Safiabadib A., Gharagheizic F., Ilani P., Mohammadi A. 

H. 2013. Asphaltene Precipitation Due to Natural 

Depletion of Reservoir: Determination Using a SARA 

Fraction Based Intelligent Model. Elsevier. 354: 177-184. 

 

Kamari A., Safiri A., Mohammadi A. H. 2015 

Compositional Model for Estimating Asphaltene 

Precipitation Conditions in Live Reservoir Oil Systems. 

Journal of Dispersion Science and Technology. 36: 301-

309. 

 

Marín J. M. 2013. Los Mapas Auto-organizados de 

Kohonen.Retrieved March 22, 2016. 

http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/

DM/tema5dm.pdf.  

 

Mohammadi A. H., Richon D. 2008. Estimating Onset of 

Precipitation of Dissolved Asphaltene in the Solution of 

Solvent + Precipitant Using Artificial Neural Network 

Technique. The Open Thermodynamics Journal. 2: 82-88. 

 

Vásquez J. 2014. Red Neuronal Feedforward como 

Estimador de Patrones de Corrientes en el Interior del 

Puerto de Manzanillo, Sanfandila: Instituto Mexicano del 

Transporte. 

 

Zendehboudia S., Shafieib A., Bahad A. 2014. Asphaltene 

precipitation and deposition in oil reservoirs - Technical 

Aspects, Experimental and Hybrid Neural Network 

Predictive Tools. Elsevier. 92: 857-875. 


	3.3. Second stage: Subcategorization according to
	composition
	3.4. Third stage: Association between Pb and AOP
	6. CONCLUSIONS

