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ABSTRACT 

Chemical transformations typically occur according to multiphase schemes. Changes in the concentrations of the 
starting materials and intermediates with time are not always described with increasing or decreasing functions. A detailed 
study of a complex process kinetics showed that at the presence of feedback far from equilibrium there may occur 
vibrational modes - periodic increase or decrease in the concentration of one of the components in time. In a numerical 
study of oscillating reactions there appears a problem in solving a rigid system of typical differential equations. The 
purpose of this study is to develop an algorithm and a program to solve the direct kinetic problem and to investigate 
multicomponent chemical systems with complex nonlinear dynamics. 
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1. INTRODUCTION 

Among the numerous oscillating chemical and 
biochemical reactions the most famous class of reactions 
is the class first discovered by the Russian scientists B.P. 
Belousov and A.M. Zhabotinsky [1]. Belousov-
Zhabotinsky’s reaction has been studied in hundreds of 
world laboratories in vessels of various shapes, in a flow, 
in porous environments, etc. 

The mechanism of Belousov-Zhabotinsky’s 
reaction has more than 80 phases. Due to this fact the 
investigation of the reactions patterns, solutions of the 
direct and inverse problems as well as the optimization 
problems are often impossible. In paper [2] there is 
proposed a simple and abstract model of Belousov-
Zhabotinsky’s reaction, which turned out to preserve the 
most important features of this reaction. Such a simplified 
scheme has been called Oregonator [2]. 
 
2. DATA ANALYSES 

We consider several variants of models of 
Belousov-Zhabotinsky’s oscillatory reaction. We assume 
that the reaction is carried out in a closed vessel. Then the 
reaction scheme can be presented as follows [3]:  
 

,

,

2 ,

2 ,

,

A Y X

X Y P

B X X Z

X Q

Z fY

 
 
  




       (1) 

 
where A  and B  – raw reactants, P  and Q  – products, 

X , Y , Z  – intermediates: 2HBrO , Br   and ( )Ce IV  

correspondingly. Differential equations describing the 
dynamics of Belousov-Zhabotinsky’s reaction (according 
to a simplified Oregonator scheme) has the following form 
[4]: 
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where 1 1.34k   mole/s, 9
2 1.6 10k    mole/s, 

3
3 8 10k    mole/s, 7

4 4 10k    mole/s, 0.06A   mole, 

0.06B   mole. Stoichiometric factor f  and rate 

constant 5k  are parameters related to the consumption of 

reactants  which can be varied [5]. 
System (2) is characterized by high rigidness 

coefficient, calculated according to the formula 
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where i  - eigenvalues of the Jacobi matrix of the system 

of differential equations along its solutions and 
Re( ) 0i  . The rigidness coefficient ( )t  for system (2) 

exceeds 61.4 10  [6]. 
Thus, for direct kinetic problem (2) explicit 

schemes for solving typical differential equations become 
inapplicable. Therefore, the only possible way to solve 
problem (2) is to use implicit methods. 

Let’s consider another type of an Oregonator 
model which takes into account the reaction in an 
isothermal reactor of a constant volume with metabolism 
(an open system, ideal mixing reactor). A kinetic scheme 
with a complex limit cycle will consist of six phases [7]:
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This reaction involves 7 substances: 3A BrO , 

( )C M n  – ion of a metal catalyst, P HOBr , 

2W BrO , 2X HBrO , Y Br , ( 1)Z M n   - an 

oxidized form of the ion of a metal catalyst. Let’s mark the 
concentration of the reagents in the following way: 

1 3[ ]c BrO , 2 [ ]c Br , 3 [ ( )]c M n , 4 2[ ]c HBrO , 

5 [ ]c HOBr , 6 2[ ]c BrO , 7 [ ( 1)]c M n  . Since 

reaction (4) takes place in a constant volume isothermal 
reactor with metabolism, then the corresponding system of 
differential equations consists of equations of the form: 
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where /     is the time of the mixture in the reactor, 
  – reactor volume,   – volumetric flow rate of the 

mixture through the reactor, ,( 1..6)iv i   are given by:  
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Kinetic constants take the following values: 

1 0.084k   mole/s, 8
2 4 10k    mole/s, 3

3 2 10k    

mole/s, 5
4 1.3 10k    mole/s, 4

5 4 10k    mole/s, 

6 0.65k   mole/s, 4
1 10k   mole/s, 5

2 5 10k 
    

mole/s, 7
3 2 10k    mole/s, 7

4 2.4 10k    mole/s, 
11

5 4 10k 
    mole/s. Initial conditions are given in the 

form 0(0)с с . After checking the rigidness of the 

system of differential equations (5), we obtain that 

5( ) 4.5 10t    [8]. Thus, for a numerical solution of 
(2) and (5) it is necessary to develop an algorithm for 
solving rigid problems with a wide range of sustainability. 
Due to the large values of stiffness coefficients of systems 
of ordinary differential equations (2), (5) for a numerical 
study of Oregonator’s models there has been chosen a 
two-phase Rosenbrock’s method with complex 
coefficients which has L1-stability.  

The realization of this method is difficult and 
requires a large amount of computation. However, this 
disadvantage is offset by a high resistance, which is an 
important quality when choosing a method for solving 
rigid and superrigid systems of differential equations. 

The schemes of Rosenbrock’s method for a 
transition to a new time layer require some solutions of a 
linear system of equations with a well-conditioned matrix 
which avoids iterations. 

Two-phase Rosenbrock’s methods general 
formula can take form in the simplest case [9]:  
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where values 1g  and 2g  are obtained from the relevant 

systems of linear equations with complex numbers: 
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Here vector ny  – direct numerical solution of the 

kinetic problem in a time moment  t , vector 1ny   - direct 

numerical solution of the kinetic problem in the next time 
step, h  - time step, E - identity matrix, yf - Jacobi matrix 

of  system (2) and system (5), values 1 , 2 , 1b , 2b , a  

and d  – complex parameters defining the properties of 
the scheme, Re( )x  is real part of complex value x . In 

[9], the following values of the parameters of the method 
are given: 
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The complexity of the algorithm is in the work 

with complex numbers and matrices of complex numbers. 
To find vectors 1g  and 2g  we have to solve a system of 

linear algebraic equations with complex numbers. We 
have to move from complex numbers to real numbers 
when realizing the algorithm on a computer. To do this, 
we introduce the notation for finding vector 1g  (vector 
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2g  is similar): 1[ ( )]y nА E h f y 
 
– complex matrix, 

( )nB hf y  – real vector.  

First equation (6) can be represented in a matrix 
form: 
 

1 .Аg B                                                               (7) 

 
Since matrix A  and vector 1g  contain complex 

numbers, then (7) can be represented as follows:  

1 1( )( ) ( 0),re im re im reА iA g ig B i     where 

reА , 1reg  - real part of complex matrix A  and vector 1g , 

imA , 1img  - corresponding complex parts of matrix A  and 

vector 1g , i  - an imaginary unit. 

To find vector 1g  it is necessary to solve a 

system of equations 
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Its solution can be written in the following way: 
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DISCUSSIONS 

The integration results of system (2) with initial 

conditions 11
0 5 10X    mole, 7

0 3 10Y    mole, 
8

0 5 10Z    mole, 1f  , 5 0.5k   are presented in 

Figure-1, Figure-3. An integration step is 310h  . The 
system of differential equations (2) is characterized by 
periodic changes of concentrations with 
period 57.58T c . 
 

 
 

Figure-1. Oscillating values of X reactant concentrations 
in reaction (2). 

 

 
 

Figure-2. Oscillating values of Y reactant concentrations 
in reaction (2). 

 

 
 

Figure-3. Oscillating values of Z reactant concentrations 
in reaction (2). 

 
The integration results of system (5) with initial 

conditions 1 0.1387с   mole, 7
2 1.534 10с    mole, 

4
3 1.176 10с    mole, 8

4 3.165 10с    mole, 
4

5 1.956 10с    mole, 7
6 5.814 10с    mole, 

6
7 6.31 10с    mole are given in Figure-4, Figure-5. An 

integration step is 310 .h   
According to the Figures we can see that kinetic 

curve of reagent 4c  is characterized by a sinusoidal 

oscillation mode and kinetic curve of reagent 5с  by a 

complex periodic oscillation mode [10]. 
 

 
 

Figure-4. Fluctuating values of 4c  reagent concentration 

in reaction (5). 
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Figure-5. Fluctuating values of 5с  reagent concentration 

in reaction (5). 
 
3. CONCLUSIONS 

The article gives an algorithm for solving the 
direct kinetic problem based on Rosenbrock’s implicit 
schemes with complex coefficients. An algorithm test has 
been performed on the famous Belousov-Zhabotinsky’s 
reaction provided with the models taking into account the 
reactions in a closed and in an isothermal reactor of a 
constant volume. 

A numerical simulation of Belousov-
Zhabotinsky’s reaction has showed that periodic 
oscillations of reactant concentrations with period of 

57,58T c can exist in a closed system. Simultaneously, 
fluctuations in concentrations can be represented by quasi-
sinusoidal and complex periodic modes in an isothermal 
reactor. 

There has been worked out a program providing a 
numerical study of oscillatory reactions in Object Pascal in 
Lazarus. 
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