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ABSTRACT 

In this paper a new Gradient Descent based Genetic Algorithm (GDGA) is proposed and used to solve benchmark 

Nonlinear Least Squares (NLS) problems. GDGA uses theoretically calculated gradient to perform a gradient descent 

around the best solution found by the Genetic Algorithm (GA). This approach employs the GA to escape from local 

minima and estimate a solution in the neighborhood of the global minima. Once an approximation to the global minimum 

is found, gradient descent is done with the solution found by the GA as the starting point. Stochastic search algorithms like 

GA can easily compute a solution in the vicinity of the global minimum but take a long time to converge to the exact 

minimum due to the random nature of the search. Thus GDGA synergistically combines the advantages of deterministic 

local search and heuristic random global search to computes an accurate solution efficiently. Simulation results indicate 

that GDGA performs well on benchmark NLS problems. 

 
Keywords: genetic algorithm, gradient descent, nonlinear least squares. 

 

1. INTRODUCTION 

Fitting a model to a set of experimental 

observations is a problem of long standing importance. In 

many important applications the model is nonlinear with 

respect to the parameters and well-developed linear 

regression methods cannot be applied [18]. Consider a set 

of experimental observations {(x1,y1), (x2,y2), (x3,y3), 

(x4,y4)…… (xn-1,yn-1), (xn,yn) }which relate an input 

variable x Є Rn
 and output variable y Є R. The unknown 

relationship between x and y can be modelled a functional 

relationship y:= f(x,ڧ). Thus the problem of modelling the 
unknown relationship between x and y can be reduced to 

finding a value of theta that minimizes an error measure 

between predictions [18] f(xi, ڧ) and experimental 
observations yi. 

Alternative error measures such as sum of 

absolute errors or maximum prediction error over the data 

can be chosen but have the disadvantage of resulting in a 

non-differentiable cost function. In the Nonlinear Least 

Squares (NLS) formulation the error measure is taken to 

be the sum of squares of the prediction errors [18]. In NLS 

the error measure or cost function is in general a nonlinear 

function of the parameters of the model. Also the resulting 

cost function can be highly multimodal. However the 

problem of finding a globally optimal solution to a highly 

nonlinear multimodal function is a NP complete problem 

and hence only an approximate solution can be computed 

using heuristic random search algorithms like GAs.  

In “A genetic algorithm based technique for 

computing the nonlinear least squares estimates of the 

parameters of sum of exponentials model” [2] Mitraet al. 

propose an iterative algorithm based on a generational 

genetic algorithm for calculating the nonlinear parameters 

of sum of exponential models. They have tested their 

algorithm in real life data and their simulation results 

prove that their proposed procedure is highly efficient. 

They add that since GA has been employed as a search 

technique it is not required to calculate the derivatives of 

the cost function with respect to the parameters instead the 

algorithm searches based on the fitness levels and 

converges faster.  

O Kocadagli in “A novel nonlinear programming 
approach for estimating CAPM beta of an asset using 

fuzzy regression” [3] has taken the Capital Asset Pricing 
Models for study. The existing techniques such as the least 

squares method (LSM) and the Robust Regression 

Technique (RRT) which are used for evaluating the beta 

coefficient remove the extreme values.  He argues that by 

removing these extreme values the accuracy of the beta 

coefficient is reduced as these values might contain very 

important information. So, he proposes a fuzzy regression 

approach which takes into account these values as well. 

He has tested his approach in calculating the beta 

coefficients of three assets in Istanbul Stock Exchange and 

compared his results with the traditional approaches. 

In  the paper “Nonlinear conjugate gradient 
methods with structured secant condition for nonlinear 

least squares problems”[4] Kobayashi et al. study 

conjugate gradient methods that utilize the Hessian 

structure of the objective function for solving nonlinear 

least squares problems. The structured secant condition 

provides estimation for the Hessian and given specific 

assumptions regarding the bound and neighbourhood, 

provide favourable global convergence. 

N Sagara in “A hybrid method for the nonlinear 

least squares problem with simple bounds” [5] utilizes a 
trust region technique which imposes upper and lower 

bounds on the variables of nonlinear least squares 

problems to construct feasible regions of solutions. The 

result is a finer convergence devoid of the combinatorial 

complexities normally encountered in alternative 

approaches. Z Chen et al. in their paper “A Parallel 
Iterative Method for Solving Nonlinear Least-Squares 

Problems” [6] employ a parallelized approach to solution 
of nonlinear least squares problems using modified 

ordering of variables which are distributed among non-
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disjoint Jacobian groups. The technique has good speed up 

and efficiency. 

M Aciet al. in their paper “A hybrid classification 
method of k nearest neighbor, Bayesian methods and 

genetic algorithm” [7] propose a hybrid approach to 
machine learning using the said three techniques with the 

aim of elimination of training sets that are not conducive 

to learning. They observed that the new technique resulted 

in upto 75% improvement in accuracy for certain datasets 

and found that it works well even for small datasets. GR 

Liu et al. in their paper "A combined genetic algorithm 

and nonlinear least squares method for material 

characterization using elastic waves" [8] make use of a 

material characterization problem in which parameters are 

determined by minimizing error functions and with a 

forward solver. Genetic algorithm is used to find 

favourable solutions which then act as the initial seeds for 

nonlinear least squares method. Comparison of error 

function values results in the identification of the required 

parameters [8]. 

Two hybrid genetic algorithms are discussed in 

[14]. One uses GA with hill climbing and the other uses 

GA with Quasi Newton [14]. Whereas in [17] a hybrid 

simulated annealing technique is used for estimating the 

nonlinear parameters. An average differential evolution 

algorithm is proposed in [16]. S Biswas et al. in their paper 

“An artificial bee colony-least square algorithm for 

solving harmonic estimation problems”, approach the 
solution of harmonic estimation problems in power quality 

signals using a stochastic optimization technique called the 

artificial bee colony which they hybridize using least 

squares. The results demonstrate that the new technique 

outperforms previous techniques. 

Rest of the paper is organized as follows. Section 

2 contains the detailed explanation of the working of the 

GA. GD algorithm is discussed in section 3. The proposed 

GDGA is presented in section 4. Results obtained are 

discussed in section 5. Section 6 concludes the paper with 

future enhancements. 

 

2. GENETIC ALGORITHM 

Genetic Algorithm is a global search heuristic 

and has been successfully used to solve optimization 

problems [1][15][14]. It employs the techniques which are 

inspired by evolution such as inheritance, mutation, 

crossover and selection. The algorithm searches for the 

best solution in the search space that optimizes the cost 

function. The algorithm starts with randomly generated 

individuals. Then the individuals are tested against a 

fitness value which is generally the cost function in the 

optimization problem. The fittest ones are selected 

probabilistically from the current population. Some of the 

selected ones are not altered and are just carried over to 

the next generation [1][14][15]. A percentage of the other 

individuals are altered using the genetic operators such as 

mutation or crossover. In order to perform crossover, two 

parents are selected from the pool for breeding. The child 

which is formed will share the characteristics of both the 

parents. By performing crossover on two fit parents, the 

child will have high quality chromosomes when compared 

to its parents [10].Mutation is next applied to the 

individuals where the symbols of the chromosomes are 

randomly altered with a given probability p. The value of 

p is set to be very small so that only a few chromosomes 

undergo change due to mutation. After applying crossover 

and mutation operations to the pool the next generation of 

solutions is obtained. Since the new generation is formed 

by the selected fittest individuals, the new generation will 

be superior to the previous generation. Iteration terminates 

when the desired fitness value is obtained or maximum 

number of iterations have been reached. 

GA however has its limitations. Using GA 

finding the solution to a highly multimodal and high 

dimensional optimization problem will require repeated 

calculations of the fitness function which can be very 

expensive [11]. Therefore an approach that combines the 

explorative ability of the GA but reduces the number of 

function evaluations would be very effective.  

 

3. GRADIENT DESCENT ALGORITHM 

Gradient descent algorithm is a first order 

optimization algorithm that is used to determine the local 

minimum of a cost function [4]. The algorithm requires 

the computation of the gradient of the function and in 

order to find the local minimum of the cost function, small 

steps ڦ are taken proportional to the negative gradient of 
the function.  

This algorithm starts at a random point x0 and the 

cost function F(x0) will reduce the maximum if it moves in 

the direction of the negative gradient of F at x0[13]. 

Starting from the random point X0, we move in 

the sequence x1,x2,x3..such that F(xi)> F(xi+1).  

The equation is given by  

 �⃗�+ଵ = �⃗� −  ƞ∇�ሺ�⃗�ሻ 
 

Where  

 �⃗� = current approximation to the minimum 

 = rate of descent ∇� = gradient of the function  

 

Gradient Descent Algorithm is proven to 

converge to the local minimum with a good guess of the 

starting position and value of [12]. In the case of a 

convex optimization function the local minimum will be 

the global minimum thereby the algorithm converges to 

the global best solution. However, since most cost 

functions are non-convex, the algorithm might converge to 

a local minimum. Therefore combining the exploitation 

ability of the gradient descent algorithm with the 

explorative ability of the GA is of interest. 

 

4. PROPOSED GRADIENT DESCENT GENETIC  

ALGORITHM 

In this paper a new gradient descent genetic 

algorithmic (GDGA) approach is applied to minimize the 

sum of squares error. GA is a stochastic algorithm 

therefore it is good at exploring multiple minima. Due to 



                                    VOL. 11, NO. 21, NOVEMBER 2016                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                             12878 

its stochastic nature it explores the whole search space 

however; it provides only an approximate solution. GD on 

the other hand is a local search heuristic which does 

accurate local search.  

The algorithm proposed in the paper first uses 

GA to estimate the parameters of the nonlinear equation. 

The Genetic algorithm starts with random values for the 

parameters of the nonlinear function and with every 

iteration the algorithm approximates the nonlinear 

equation. Since Genetic algorithm is a global optimization 

algorithm it is computationally expensive. Therefore we 

introduce the gradient descent approach which minimizes 

the number of iterations of the genetic algorithm.  

The proposed gradient based Genetic Algorithm 

(GDGA) uses theoretically calculated gradient to perform 

a gradient descent around the best solution found by the 

Genetic Algorithm. This approach employs a GA to 

escape from local minima and estimate a solution in the 

neighbourhood of the global minima. Once an 

approximation to the global minimum is found, gradient 

descent is done with the solution found by the GA as the 

starting point. By using the gradient descent around the 

best solution determined by the GA it will lead to faster 

convergence and produce more accurate results.  

By obtaining only an approximate solution using 

the computationally expensive GA and refining it using 

the efficient GD local search algorithm the advantages of 

the GA and GD method are effectively combined. 

The cost function f is the input to the GA. The 

GA returns the best solution X. This solution is the starting 

point for GD. GD returns the optimal solution X* such that 

f(X*) <f(X). 

. 

 

A block diagram of the working of the proposed GDGA is given in Figure-1. 

 

 
 

Figure-1. Block diagram of the GDGA 

 

Table-1. Nomenclature used in GDGA 
 

Symbol Description 

N 

x
(i)

 

P(k) 

M(k) 

f 

γ 

η ∇ 
  

Size of the population for GA 

Individual ‘i’ in the population of solutions for GA 

Population of solutions at iteration ‘k’ 
Mating population of solutions at iteration ‘k’ 

Cost function 

Mutation probability for GA 

Learning rate for the gradient descent 

Gradient operator 

Threshold value for GD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                    VOL. 11, NO. 21, NOVEMBER 2016                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                             12879 

Table-2. Gradient descent genetic algorithm (GDGA). 
 

Level 1: GA:  

                      k := 0 

                     Initialize P(k) with  randomly generated ‘N’ feasible solutions x(1)
 to x

(N) 

for i=1 to N do 

 Compute f (x
(i) 

) 

                      Done 

                      Repeat until stopping criterion is met 

 

Selection: Select best solutions from P(k) 

                                                  Mk : = Selected (P(k)) 

 Crossover: Randomly select x
(i)

 ,  x
(j)

 Є M(k)  where 1 ≤ i , j  ≤ N                        

 x
(iʹ)

 , x
(jʹ)

 : = Crossover(x
(i),

 x
(j)

) 

                         Replace  x
(i)

 , x
(j)

  with  x
(iʹ) 

, x
(jʹ) 

in M(k)  

 

     do                Mutation:Randomly select x
(i)

 Є M(k)where 1 ≤ i  ≤ N with probability γx(iʹ)
 := Mutation(x

(i)
)                       

                                                   Replace x
(i)

 with x
(iʹ)

 in M(k) 

 

                                  P(k+1) := M(k) 

For i=1 to N do 

       Compute f (x
(i)

) 

                                   done 

 

 

 

 

Return x
(best)

 such that f (x
(best))  ˂  f (x(i)

)   1 ≤ i  ≤ N  
Level 2:   GD :  

                         x
(0)

 : = x
(best)

 

                         k := 0 

                        Repeat until | f(x(k+1)) - f(x(k)) | ˂    

   

                            x
(k+1)

 : = x
(k)

 – η∇ f(x(k)) 

                    do       x(best) := 
 x

(k+1) 
  k := k + 1 

 

                          Return  x
(best) 

 

5. RESULTS AND DISCUSSIONS 

Two benchmark problems have been taken for 

testing the proposed GDGA. In benchmark problem 1 

estimating the amplitude, angular frequency and phase 

shift of a sinusoid from noisy data is considered. In 

benchmark problem 2 estimating the amplitude, angular 

frequency, phase shift and decay constant of a decaying 

sinusoid from a noisy data is considered. Theoretical 

calculation of the gradients is shown below.  

 

5.1 Benchmark problem 1 

 

The cost function for benchmark problem 1 is 

given in equation (1).Partial derivatives with respect 

toݔଵ,ݔଶ,ݔଷ are given in equations (2),(3) &(4). The 

gradient descent is given in (5). 

 �ሺݔሻ = ∑ ሺݔଵ sinሺݔଶ�� + ଷሻݔ − ሻଶ��=ଵ�ݕ                                (1) 

 ����భ = ∑ ଵݔ]2 sinሺݔଶ�� + ଷሻݔ − sin ሺ��=ଵ[�ݕ ��ଶݔ +  ଷሻ     (2)ݔ

 

 

 ����మ = ∑ ଵݔ]2 sinሺݔଶ�� + ଷሻݔ − ଵcos ሺ��=ଵݔ[�ݕ ��ଶݔ +  ଷሻ��           (3)ݔ

 ����య = ∑ ଵݔ]2 sinሺݔଶ�� + ଷሻݔ − ଵcos ሺ��=ଵݔ[�ݕ ��ଶݔ +  ଷሻ(4)ݔ

 ∇C = [ ����భ ����మ ����య]�                                                                  (5) 
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Figure-2. Illustrates the plot of the nonlinear function 

against time for benchmark problem 1. 

 

 
 

Figure-3. Displays the plot of the nonlinear function 

against time for benchmark problem 1. Solid line - is the 

ideal y(t), ‘o’- y(t) with parameters estimated with GDGA,  

‘*’- noisy y(t) used for parameter estimation. 

 

5.2 Benchmark problem 2 

 �ሺݔሻ = ∑ ଵݔ] e�మ��sinሺݔଷ�� + ସሻݔ − ଶ��=ଵ[�ݕ                                                                                                                               (6) ����భ = ∑ ��ଵe�మݔ]2 sinሺݔଷ�� + ସሻݔ − e�మ��sin ሺ��=ଵ[�ݕ ��ଷݔ +  ସ)                                                                                (7)ݔ
 ����మ = ∑ ��ଵe�మݔ]2 sinሺݔଷ�� + ସሻݔ − ଵsin ሺ��=ଵݔ[�ݕ ��ଷݔ +  ସሻe�మ����                                                                                                                       (8)ݔ

 ����య = ∑ ��ଵe�మݔ]2 sinሺݔଷ�� + ସሻݔ − ଵe�మ��cos ሺ��=ଵݔ[�ݕ ��ଷݔ +  ସሻ��                                                                                   (9)ݔ

 ����ర = ∑ ��ଵe�మݔ]2 sinሺݔଷ�� + ସሻݔ − ଵe�మ��cos ሺ��=ଵݔ[�ݕ ��ଷݔ +        ସሻ                                                                                     (10)ݔ

 

 ∇C = [ ����భ ����మ ����య ����ర ]�                                                                                                                                                                 (11)  

    

 
 

Figure-4. Illustrates the plot of the nonlinear function 

against time for benchmark problem 2. 

 
 

Figure-5. Displays the plot of the nonlinear function 

against time for benchmark problem 2. Solid line - is the 

ideal y(t), ‘o’- y(t) with parameters estimated with GDGA,  

‘*’- noisy y(t) used for parameter estimation. 
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The Figures 3 and 5 show the performance of the 

proposed GDGA which was run for 100 iterations with a 

population size of 20. The values of the amplitude, angular 

frequency and the phase shift estimated by the GDGA are 

tabulated for benchmark problem 1 and 2. Results indicate 

that the observed values nearly approximate the target 

values. 

 

 

Table-3. The values of the parameters estimated by GDGA. 
 

Benchmark problems 
Target 

output 

Output generated by 

GDGA 

Benchmark Problem no 1: 

Amplitude              A 

Angular Frequency       ω 

Phase Shift             ϴ 

 

2 

2 

1.5 

 

1.9419 

2.0025 

1.4216 

Benchmark Problem no 2: 

Amplitude                    A 

Angular Frequency      ω 

Phase Shift                   ϴ 

Decay  constant            α 

 

2 

2 

1.5 

-2 

 

2.0087 

1.8323 

1.6498 

-2.2922 

 

6. CONCLUSIONS 

In this paper a novel Gradient based Genetic 

Algorithm (GDGA) that synergistically combines the 

global random search ability of the genetic algorithm and 

computationally efficient local search ability of the 

Nelder-Mead algorithm was proposed. The proposed 

algorithm was used to compute an accurate solution of 

benchmark Nonlinear Least Squares (NLS) problems. In 

this approach computationally expensive random search 

with the GA is only used to compute an approximate 

solution in the neighbourhood of the global minimum. 

Once an approximate solution is computed, the exact 

minimum is computed with an efficient local search 

algorithm avoiding the need for locating the exact 

minimum by random search. Simulation results indicate 

that GDGA performs well on benchmark NLS problems. 

Future work can explore the performance of combinations 

of alternate global and local search algorithms. Parallel 

implementations of GDGA for solution of large scale NLS 

problems can also be considered.  
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