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ABSTRACT 

An underwater glider is a class of autonomous underwater vehicles. While these gliders typically move in a saw-

tooth pattern, a spiral motion, which may more effective for specific applications, is considered here. The spiral motion of 

glider may extend its possible applications such as delivery or recovery equipment for subsea installation. In this paper, a 

spiral glide path for the glider is considered, and the corresponding dynamic model based on Lagrangian principle and 

analytical expressions determined. The steady-state spiraling equations were derived and solved recursively using the 

fsolve algorithm. The results compare well with simulation results based on Newton’s method. The spiraling motion is 
highly maneuverable, with less than 1 m turning radius.  

  
Keywords: underwater glider, dynamic model, spiraling motion.  

 

INTRODUCTION 

In 1989, Henry Stommel [1] published a 

revolutionary article about buoyancy driven floats for 

oceanography. Since then, various underwater gliders such 

as ALBAC [2], Slocum [3], Spray [4], Seaglider [5]were 

developed for marine applications at different depths of 

ocean. 

An underwater glider is a special type of 

autonomous underwater vehicles (AUV) that is primarily 

used in oceanographic sensing and data collection. In these 

applications, they are attractive because of their low cost, 

autonomy and capability for long-range, extended duration 

deployments. These gliders are buoyancy driven low 

energy consumption autonomous underwater vehicles with 

fixed wings and rudder, a cylindrical hull and internal 

moving masses [6, 7].  

The operating principle of an underwater glider is 

that at deployment it is negative buoyant and therefore 

tends to dive, during which its wings convert downward 

motion into the horizontal plane, thus producing a forward 

force. Once a predetermined depth is reached, the vehicle 

changes its buoyancy to become neutrally buoyant [8, 9]. 

Thor I. Fossen [10, 11] developed a nonlinear 6-DOF 

dynamic model for marine vehicles based on Euler–
LaGrange system including control motions of internal 

components. Leonard and Graver [12, 13] derived a 

generalize dynamic model of underwater glider based on 

first principles including nonlinear coupling between 

internal moving mass and glider. Zhang [14] derived the 

dynamic model of gliding robotic fish based on Newton 

principles by simplifying its dynamics motion at sagittal 

plan.  Zhang et al [15-17] were proposed the spiral motion 

of gliding robotic fish by deflecting its tail. Leonard and 

Bhatta [18] proposed the numerical simulation of spiral 

motion by changing the position of internal moving 

masses. It’s required more complicated control systems to 

manage the position of internal moving masses during 

spiral motion. However, The spiral motion approach that 

used by Zhang [15, 16] is more appropriate to achieved 

high maneuverability.  This work is an extension of 

Zhang’s, with emphasis on the dynamics of gliders in a 
spiral glide path. 

This paper is organized as follows: Section II 

outlines the derivation of a complete non-linear dynamic 

model of an underwater glider based on Euler–LaGrange 

principle with an internal moving mass in a unidirectional 

movement to control the pitch angle of glider. In Section 

III the simplified nonlinear dynamic model for a steady 

state 6-DOF spiraling motion of glider is derived and 

solved using the fsolve recursive algorithm.  In Section IV, 

the results are  validated with previously published 

experimental and simulation results by Zhang [15, 16].  

 

DYNAMIC MODELING OF UNDERWATER 

GLIDER 

A simplified point mass dynamic model of a 

glider with internal moving mass for pitch control is used 

to describe the gliders 6-DOF motion. In this work, an 

underwater glider, including all internal moving mass 

moments and external forces, is considered as a rigid 

body. The position of internal moving mass will control 

the glide angle and speed. The mass distribution an 

underwater glider is shown in Figure-1. 

 

 
 

Figure-1. Glider mass distribution [19]. 
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The total glider mass or body mass can be 

expressed as m+bm+wm+hm=vm . Where  
h

m  

represents a uniform glider hull mass, wm  point mass 

with displacement wr to the fixed center of gravity and 

buoyancy, m the movable mass with vector position pr to 

control the pitch angle during gliding and 
bm the variable 

ballast mass with respect to geometry center (GC). The 

mass ‘m’ is the mass of displaced fluid mm0m v  . The 

glider is neutrally buoyant if the 0m is positive (float) and 

vice versa. 

 

KINEMATICS MODEL 

Two frames of reference, one body frame and 

other internal frame are required to define the motion of 

rigid body as shown in Figure-2. Let e1, e2, e3 denote body 

frame related to i, j, k inertial frame of references 

respectively, as shown in Figure-2. e1 and e2 lies in the 

horizontal plane and is perpendicular to the gravity along 

the wings of the glider respectively. The k axis is positive 

downwards and lies in the direction of gravity.   

 

 
 

Figure-2. Body frame axis of [12] 

 

In order to model the kinematics of the glider 

mathematically, the center of gravity (CG), center of 

buoyancy (CB), rotational matrix R, generalized position 

and velocity must be identified. The six degrees of 

freedom kinematic equations for the glider are described 

in [14] Let the position of the glider from the inertia frame 

to the origin of body frame be  Tzyxb   and 

orientation  TȥθφR  . The gliders longitudinal velocity 

is  TzvyvxvV   and relative angular velocity 

 TzȦyȦxȦȦ  . Thus, the kinematic equations are.  

 

b
RȦR                                                                   (1) 

b
Rvb                                                                     (2) 





















cθ*cφcθ*sφsθ
sȥ*sθ*cφcȥ*sφsȥ*sθ*sφcȥ*cφcȥ*cθ

sȥ*sφcȥ*sθ*cφsȥ*cφcȥ*sθ*sφcφcθ
R  

where ‘s’ is sine and ‘c’ is cosine. ] ȥ φ, , [θ  

represents the pitch angle, roll angle and yaw angle 

respectively. 

 

DYNAMIC MODEL 

The dynamic model is derived based on the 

Lagrangian principle instead of the Newton-Euler 

formulation adopted by Zhang [14]. The Lagrangian 

formulation is based on the energy of a dynamic system 

[20].  

The Lagrange’s principle in general coordinates 
is 

 

Q

idx

dL

idv

dL

dt

d





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


            (3) 

 

L=K.E-P.E              (4) 

 

Where, L=Kinetic Energy (K.E) – Potential 

Energy (P.E) and Q is external forces. 

The general kinetic energy expression of dynamic 

system is  

 

iȦiI
T

iȦ
2

1

iviM
T

iv
2

1
K.E        (5) 

 

The first term in Equation 5 is the kinetic energy 

due to translation velocity vi and the second term is the 

kinetic energy due to angular velocity ωi of the dynamic 

system.   

Underwater gliders work under the influence of gravity 

force and buoyancy. The gravity force acts in a downward 

direction along the positive the z axis of the glider. The 

kinetic energy of underwater glider is 

 

   
iȦim

f
I

rb
I

T

iȦ
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iv
f

M
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Where, M
f

M
rb

M  is rigid body mass and 

added mass respectively, I
f

I
rb

I   rigid body inertia 

mass and added inertia respectively. The potential energy 

of dynamic system due to gravity force can be expressed 

as  

 

igZimP.E                                 (7) 

 

where the g is the gravity force and iZ  is the 

position of center of mass of dynamic system in inertial 

frame of reference. From equation 7 the potential energy 

of system in body fixed coordinates is  

 

 
i

ZTRgm
b

P.E b             (8) 
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where 
i

Z
T

R  is represented as [20]. Using the 

values of K.E and P.E in Equation 4  

 
i

ZTRgmiȦiI
T

iȦ
2

1

iviM
T

iv
2

1
L b           (9) 

 

Differentiating Equation. (9) with respect to 

translational velocity and angular velocity and then 

differentiating with respect to time.  
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After simplification, the translation velocity of 

the glider is  

 

Fk
T

gR
b

m
b

Mv
b

Ȧ
b

vM        (11) 

 

Here, F is total external force acting on the 

dynamic system. 

 

u
ext

Fk
T

gRmk
T

gR
v

mF      (12) 

 

Here, k is the unit vector along the gravity in Z-

axis direction, Fext is the external hydrodynamic forces 

acting on the glider body, expressed in the body-fixed 

frame, and ‘u’ is the total force exerted on the movable 
mass m  by the glider structure, expressed in the body 

fixed frame. 
v

m is glider mass acting along the gravity of 

the glider.   

The control input force ‘u’ for moveable mass is  
 

0
u

i
vmk

T
gRmu                                   (13) 
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Here Im
f

M
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Similarly, the equation of angular moments is  

 

TJ 
i

                                      

(15) 

T
b
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b

Ȧ
b
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The external moment can be described including 

movable mass and external force as  
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The buoyancy mass and internal moving mass 

control force u is  

0
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Rgmu   

u
p

rk)
T

(R
p

grm

k)
T

(R
w

gr
w

mextTvMvȦ(JȦ
J

1
Ȧ





                    (17) 

 

00
u m is buoyancy control. 

0
u will be simplified as the 

voltage applied to the pump.  

 

HYDRODYNAMIC MODEL 

In order to study the hydrodynamic behaviors, all 

the velocity fixed coordinates are first transferred to the 

body frame of reference. For this purpose, the rotational 

matrix 
bv

R is used.  
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where ‘s’ is sine and ‘c’ is cosine. 
Where α is the angle of attack )x/vz(v

1
tanα   

and β is the sideslip angle /v)y(v
1

sin
 . The 

hydrodynamic forces (drag, lift and side force) and 

moment (roll moment Mx, pitch moment My and yaw 

moment Mz) are transferred from velocity frame to body 

frame of reference.  Hence,  
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The hydrodynamic forces and moments are 

generally dependent on the angle of attack, sideslip angle 

and velocity. 
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Here δ is the rudder deflection, 
q3

K,
q2

K,
q1

K are 

the rotational damping coefficients. The ‘K’ coefficients 
are based on the CFD simulation [6, 17, 21].  

 

STEADY-STATE SPIRALING MOTION 

In this study, the steady spiraling motion of 

underwater glider is investigated numerically through an 

iterative method. A numerical algorithm based on the 

fsolve recursive algorithm was used to solve the 6-DOF 

dynamic equations of glider. The spiraling motion of 

glider will be manipulated by three control inputs 

(
0m,mδ, ) deflection of rudder, position of internal mass 

to control the pitch angle and net buoyancy rate 

respectively. The hydrodynamic angles (α, β) are 
considerably effected by the hydrodynamic forces and 

moments during the motion of glider under the influenced 

of fixed control inputs. The angular velocity along z-axis 

in body fixed coordinates is  
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The translational velocity in body fixed coordinates is 
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The steady state spiraling motion dynamic 

equations were obtained by setting the derivatives and all 

control forces in Equation. 14 and Equation. 17 to zero.  
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The 6-DOF dynamic equations at steady state 

conditions are obtained by substituting all the values in the 

dynamic model. 
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The six states: pitch angle, heading angle, angular 

velocity along z-direction, glider velocity, angle of attack 

and side angle  βα,V,,zȦφ,θ, was solved numerically to 

define the spiraling motion of underwater glider for three 

inputs forces (internal moving mass position, net 

buoyancy and rudder deflection). The dynamic of spiraling 

motions is highly nonlinear due to trigonometry functions 

involved in these equations. We write these equations in 

steady state function to obtain the solution numerically. In 

this study, the spiraling motions of a prototype gliding 

robotic fish-like underwater glider [17] with parameters in 

Table 1 are considered.   

The spiraling motion of glider involves two 

parameters. The rotational motion around the z-direction 

with radius R and glide speed in vertical plane verticalV  

 

α)Vsin(θverticalV                      (37) 

 

z
α)/Vcos(θR                                  (38) 

 

RESULTS AND DISCUSSIONS 

 Initial values 











0β0,α3,V

0.1,zȦ-10,φ-10,θ
were 

chosen for the fsolve iteration algorithms. The numerical 
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solution of the given states and initial conditions are 

shown in Table-1.  

The glide velocity increases with increasing net 

buoyancy while at fixed buoyancy and position of 

moveable mass with change of ruder deflection is 

decreased the turning radius of spiral motions. The 

numerical simulation results are consistent with the 

Newton iteration method and experimental results by 

Feitian [15-17] as shown in Figure-3 and Figure-4. 

The Newton method requires the 

Jacobian/derivatives for the evaluation of the nonlinear 

equations, which is time consuming  and difficult for 6-

DOF nonlinear equations [22], although a Jacobian may be 

desirable for a poorly scaled problem. However, Newton’s 
method cannot be used if the Jacobian is a singular matrix. 

On the other hand, the Matlab’s fsolve function using 
Levenberg-Marquardt Algorithm is computationally 

efficient and does not require a Jacobian to solve nonlinear 

equations.

 

Table-1. Glider parameters 
 

Parameters values Parameters Values 

xm  3.88kg ym  9.9kg 

zm  5.32kg m  0.8kg 

D0K  0.45 

D

K  17.59
-1rad  


SF

K  -2 
-1rad  


SF

K  1.5 
-1rad  

L0K  0.075 

L

K  19.58 
-1rad  

1I  0.8
-2kg.m  2I  0.05

-2kg.m  

3I  0.8
-2kg.m  M0K  0.0076m 


Mr

M  -0.3 m/rad 

MP

M  0.57 m/rad 


My

M  5 m/rad 

My

M  -0.2 m/rad 

q1K  -0.1 m-s/rad q2K  -0.5 m-s/rad 

q3K  -0.1 m-s/rad S 0.012 
2m  

 

 
 

Figure-3. Turning radius of spiraling motion verse net 

buoyancy at fixed position of internal pitch control mass. 

 
The relationship between the spiral turning radius 

‘R’ and the velocity on vertical plan ‘ verticalV ’ is 
inversely proportional, as the turning radius and velocity 

decreases with an increase of tail deflection angle.  When 

the turning radius is increased, the side slips angle ‘ β’ also 
increases, which influence the velocity of the glider. The 

sideslip angle, β is an angle between the velocity vector 

and longitudinal axis of the glider. On the other hand, the 

steady spiraling motion of glider is also function of net 

buoyancy. As the buoyancy mass increases, the vertical 

velocity increases, but the radius of the spiral motion 

decreases. The position of internal pitch control mass 

increases or decreases the sideslip angle which influences 

the glide speed and turning radius.  

  

 
 

Figure-4. Turning radius of a spiraling motion verse tail 

deflection at fixed position of internal pitch control mass 

(5cm) and a net buoyancy of 30 gram. 
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The experimental results and simulation results 

differ 0-8%. The experimental results may be subjected to 

measurements error. These errors may also be due to the 

glider not fully achieving steady state conditions [17, 23] 

e.g. in a transient phase. Experimental data acquired 

through the camera is susceptible to errors.  

 

CONCLUSIONS 

In this study, a mathematical model of a glider 

based on Euler-Lagrangian method is derived. This model 

is a simplification of Graver and Leonard [12, 13] 

nonlinear dynamic model and considers all external forces. 

The steady state spiraling motion equations were derived 

and numerically solved based on the fsolve recursive 

algorithm. The results are in close agreement with those 

based on Newton’s method as well as experimental results. 
The derived model is an alternative to that based on 

Newton’s method, as it can be solved without computing 
the Jacobian. 

 

ACKNOWLEDGEMENTS 

Authors are thankful to Universiti Teknologi 

PETRONAS for providing the resources required for this 

work. 

 

REFERENCES 

 

[1] H. Stommel, "The slocum mission," Oceanography, 

vol. 2, pp. 22-25, 1989. 

[2] K. Kawaguchi, Y. Tomoda, H. Kobayashi, and T. 

Ura, "Development and sea trials of a shuttle type 

AUV" ALBAC"," in International Symposium On 

Unmanned Untethered Submersible Technology, 

1993, pp. 7-7. 

[3] D. C. Webb, P. J. Simonetti, and C. P. Jones, 

"SLOCUM: An underwater glider propelled by 

environmental energy," Oceanic Engineering, IEEE 

Journal of, vol. 26, pp. 447-452, 2001. 

[4] J. Sherman, R. E. Davis, W. Owens, and J. Valdes, 

"The autonomous underwater glider," Oceanic 

Engineering, IEEE Journal of, vol. 26, pp. 437-446, 

2001. 

[5] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. 

Lehman, P. L. Sabin, et al., "Seaglider: A long-range 

autonomous underwater vehicle for oceanographic 

research," Oceanic Engineering, IEEE Journal of, vol. 

26, pp. 424-436, 2001. 

[6] S. A. Jenkins, D. E. Humphreys, J. Sherman, J. Osse, 

C. Jones, N. Leonard, et al., "Underwater glider 

system study," 2003. 

[7] K. Isa, M. Arshad, and S. Ishak, "A hybrid-driven 

underwater glider model, hydrodynamics estimation, 

and an analysis of the motion control," Ocean 

Engineering, vol. 81, pp. 111-129, 2014. 

[8] G. Griffiths, C. Jones, J. Ferguson, and N. Bose, 

"Undersea gliders," Journal of Ocean technology, vol. 

2, pp. 64-75, 2007. 

[9] M. Y. Javaid, M. Ovinis, T. Nagarajan, and F. B. 

Hashim, "Underwater Gliders: A Review," in 

MATEC Web of Conferences, 2014, p. 02020. 

[10] T. I. Fossen, Guidance and control of ocean vehicles 

vol. 199: Wiley New York, 1994. 

[11] T. I. Fossen, Marine control systems: guidance, 

navigation, and control of ships, rigs and underwater 

vehicles, 2002. 

[12] J. G. Graver, "Underwater gliders: Dynamics, control 

and design," Citeseer, 2005. 

[13] N. E. Leonard and J. G. Graver, "Model-based 

feedback control of autonomous underwater gliders," 

Oceanic Engineering, IEEE Journal of, vol. 26, pp. 

633-645, 2001. 

[14] F. Zhang, J. Thon, C. Thon, and X. Tan, "Miniature 

underwater glider: Design, modeling, and 

experimental results," in Robotics and Automation 

(ICRA), 2012 IEEE International Conference on, 

2012, pp. 4904-4910. 

[15] F. Zhang, "Modeling, design and control of gliding 

robotic fish," Michigan State University, 2014. 

[16] F. Zhang, F. Zhang, and X. Tan, "Steady spiraling 

motion of gliding robotic fish," in Intelligent Robots 

and Systems (IROS), 2012 IEEE/RSJ International 

Conference on, 2012, pp. 1754-1759. 

[17] F. Zhang, F. Zhang, and X. Tan, "Tail-enabled 

Spiraling Maneuver for Gliding Robotic Fish," 

Journal of Dynamic Systems, Measurement, and 

Control, 2014. 

[18] P. Bhatta and N. E. Leonard, "Nonlinear gliding 

stability and control for vehicles with hydrodynamic 

forcing," Automatica, vol. 44, pp. 1240-1250, 2008. 

[19] F. Zhang, J. Thon, C. Thon, and X. Tan, "Miniature 

Underwater Glider: Design and Experimental 

Results," 2014. 



                                    VOL. 11, NO. 22, NOVEMBER 2016                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                             13012 

[20] G. Antonelli and G. Antonelli, Underwater robots: 

Springer, 2014. 

[21] P. Jagadeesh and K. Murali, "RANS predictions of 

free surface effects on axisymmetric underwater 

body," Engineering Applications of Computational 

Fluid Mechanics, vol. 4, pp. 301-313, 2010. 

[22] W. Y. Yang, W. Cao, T.-S. Chung, and J. Morris, 

Applied numerical methods using MATLAB: John 

Wiley and Sons, 2005. 

[23] S. Zhang, J. Yu, A. Zhang, and F. Zhang, "Spiraling 

motion of underwater gliders: Modeling, analysis, and 

experimental results," Ocean Engineering, vol. 60, pp. 

1-13, 2013. 


