
 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13095

MOBILE ANALYZER: AN ANALYSIS TOOL FOR ANDROID APPS

Maryam Ahmed, Rosziati Ibrahim and Noraini Ibrahim

Department of Software Engineering, FSKTM, Universiti Tun Hussein Onn Malaysia, Malaysia
E-Mail: hi120055@siswa.uthm.edu.my

ABSTRACT

Android applications continue to dominate the mobile market as time passes. However, software quality of the
application remains a challenge. Analysis of the android application has been done by different researchers in the area of
security, power consumption and performance of the android application. Source code refactoring has been used in android
application to improve power consumption and execution time. In the area of testing that certify the quality of the product
to continue keeping the app in the market place, analysis of the application is yet to be explored and research is yet to cover
refactoring to improve android application testing. This paper proposes an analysis tool that improves the testing process of
the android application. Our analysis tool extends the ApkAnalyzer and refactors the bytecodes generated to reduce the test
path thus test cases generated are limited and have efficient coverage.

Keywords: mobile analyzer, android analyzer, refactoring, mobile testing.

INTRODUCTION

Android is an open source software development
platform that runs on various mobile smart devices (Ko et
al., 2012). Being the first free open source and fully
customizable software for mobiles, it cuts across different
hardware manufacturers including Sony, Samsung, HTC,
etc. (Asaithambi and Jarzabek, 2013). Android software
includes the operating system OS, middleware and major
applications running on mobile (Asaithambi and Jarzabek,
2013) (Ko et al., 2012). According to latest information
from international data cooperation (IDC), Android broke
through the mobile market with over one billion unit mark
in 2014, a noteworthy landmark in the progressive record
of the mobile market. This profound success has been
attributed to the strong end user demands, refreshed
product portfolios and availability of low-priced mobile
phones that can run on android OS (IDC, 2015). To
maintain this achievement, software quality of the
applications that run on android need to be certified.
Reliability of the android application lies on the quality
assurance unit. Software reliability can be enhanced by
applying improved testing techniques and policies
(Machado, Campos and Abreu, 2013). Test case
generation is an important aspect of software testing. Test
cases generated from SOFTWARE UNDER TEST (SUT)
can represent the working system of the SOFTWARE
UNDER TEST (SUT) (Asaithambi and Jarzabek, 2013).
However, study shows high rate of redundancies in
android application hence test case (Asaithambi and
Jarzabek, 2013).To further comprehend the redundancy in
android, analysis of the source code needs to be done. The
software development kit of android is predominantly
based on a popular programming language, Java. This has
enhanced the creation and recreation of more android
programs but with limited number of quality applications
(Kraemer, 2011).

Refactoring has been used over time to improve
software development. Refactoring is a code
transformation procedure that affects only the structure of
the code without adding or removing any functional
feature of the software (Alves et al., 2013). The code

transformation has been focusing on improving the
software quality by making the source code more readable
and easy to maintain. Study has shown that almost all
android applications need enhancement through
refactoring (Zhang et al., 2012). The process of refactoring
ranges from simple name editing to more complex
changes to satisfy the purpose of transformation and it has
been applied at both source code and bytecode level. A
research (Zhang et al., 2012) has it that refactoring at
bytecode level is more efficient than the java code in terms
of execution time and energy consumption with 46-97%
faster in execution time and energy consumption reduced
by 27-83%, hence emphasizing bytecode refactoring.

Several android analyser framework and tool has
been designed and developed, especially in area of
security to detect vulnerabilities. However, researchers are
yet to explore analysis tool that aim at functional testing,
while considering one of google best practices of avoiding
creation or existence of unnecessary objects due to the cost
of maintenance.

This work proposes an analysis tool for android
using the android ApkAnalyzer. To eliminate unwanted
objects in the software, we are refactoring the bytecode to
give more precise test cases with complete coverage. The
remaining section in this paper is organized as follows.
Second II discusses the related work on analysis and
refactoring. ApkAnalyzer used in our proposed model is
discussed in section III while section IV presents our
approach. A case study is presented in section V.

RELATED WORK

Android remain an active area of research due to
its market coverage. Several analysis tool has been
developed over time (Grace et al., 2012) (Vekris et. al.,
2012) (Yang et al., 2013) especially in the area of android
security.

In (Grace et al., 2012), the woodpecker system is
presented to examine how permission based security
model is enforced by employing interprocedural data flow
analysis to systematically expose possible leaks an
unauthorized user can access sensitive data. Similar to

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13096

(Grace et al., 2012), (Vekris et al., 2012) conducted their
research on how to detect leakage in android apps using
the AppIntent to analyse data transmission intended by the
user. In (Yang et al., 2013), android applications are
analysed to verify which of the applications abide by a set
of policies.

Refactoring on the other hand has been widely
used in improving software development including
android applications (Zhang et al., 2012) (Moghadam and
Cinneide, 2012) (Hecht et al., 2015).

A tool named DPartner was presented (Ying et
al., 2012) that automatically refactors android application
with computation offloading capability by analyzing its
bytecode to discover where offloading is necessary and
then rewrites the bytecode. D Partner evaluates three
android application to discover reduction of execution
time by 46%-97%. Iman and Mel presented a novel
approach that helps reduce maintainance effort by
automatically refactoring source code to achieve a high
quality design version of the current system. Another tool
Paprika (Geoffrey et al., 2015) is proposed to analyze
android application to detect android specific antipatterns
from binaries of mobile applications.

APKANALYZER

ApkAnalyser is a static, virtual analysis tool,
which can be used to analyse API references, view
application architecture and dependencies, and
disassemble bytecodes in Android apps (Sony, 2015). It’s
a complete tool chain which supports modification of the
binary application with more printouts. The modified
binary code (bytecode) can then be able to repack, install,
run and verify the result from the logcat. Some of the
features of the ApkAnalyzer include:

It explores and lookup packages, classes,
methods and fields.

It can disassemble the Dalvik bytecode method
keeping the syntax highlighted.

It can also decode the Android XML file with
highlighted syntax.

It displays UML packages and class diagrams,
and highlights class dependencies.

It modifies the APK file with predefined Dalvik
bytecode injections due to changes made to the bytecode.

Generally, there are four kinds of output in the
display window of the ApkAnalyzer:

a) UML diagrams for packages and classes.

b) A Dalvik disassembler for methods.

c) A resource detail view for resource IDs.

d) An XML decoder for XML resources.

Figure-1. An overview of ApkAnalyzer display.

Another good use for ApkAnalyser is the ability
to create a set of bytecode modifications, which could be
applied to the APK file in a batch. This automatically adds
printouts of suspicious pieces of code, to support in
investigating the execution flow of the application.

MOBILE_ANALYZER

The proposed tool is a fragment of our previously
proposed testing model. The proposed testing model is an
adaptation model from a particular web application testing
model (Reweb and Testweb) (Ahmed and Ibrahim, 2015).
The testing model has two parts as the adapted model;
Mobile_Analyzer and Test_Mobile. The Mobile_Analyzer
has as its input the android apk by setting the path of the
middle to the apk of the SOFTWARE UNDER TEST
(SUT) on the X_ApkAnalyzer. The X_ApkAnalyzer is an
extension of the open source ApkAnalyzer. The
X_ApkAnalyzeranalyse the apk to generate the bytecode.
We then apply one of google best practices of eliminating
unnecessary objects by refactoring the bytecode to
generate more precise bytecode for further analysis.
Further analysis is done to generate the UML model which
will be later use for test case generation.

Refactoring is done based on the purpose for
refactor. The purpose of refactoring in this case is to
reduce test cases generated while maintaining a good
coverage. Our first tactic is to minimise dependencies
between classes hence making the codes more testable
with reduced number of test paths. The next step is to
identify repetitive methods on same objects in different
classes of the code, then reconstruct the code while
keeping all functionalities unbroken. The following steps
are followed to refactor:

a) Identify all classes in the set Ciof the source code of

the software under test.

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13097

b) Create a state S(Ci) for each class in the universal set
Ci.

c) Identify the relationship between each class in the set.
d) Identify all test paths P in the program.
e) Identify unworkable test path and the respective

classes.
f) Reconstruct the bytecode to eliminate redundant

classes.
g) Identify set of new classes NC of the code.
h) For each class NCi of the new code, check for

repetitive methods.
i) Reconstruct to reduce repetitive testing of same object

in different classes.
j) Run the new code to ensure all functionalities are not

altered.
k) Validate the new bytecode to generate the new UML

model.

Figure-2. Adaptation testing model.

Figure-3. Mobile_analyzer framework.

CASE STUDY

This section gives more insight into our approach
by presenting a case study of a regenerated bytecode with
no alteration in it functionality and keeping the test path to
the best minimal using the technique explained in section
IV. The apk is loaded on the X_ApkAnalyzer to generate
the bytecode. For the purpose of this study, the
SOFTWARE UNDER TEST (SUT) has one main class
and is valid for purpose of testing; hence, no class was
eliminated. However, in a class, there’s repetitive method
and this was handled by reconstructing the bytecode to
avoid a repetitive task in process of testing. The new
bytecode is then generated. To verify the validity of our
approach, the two bytecode is used to generate the source
code. The source code is then run using the emulator in the
Android SDK. The emulator is configured to run on
Android 4.4 API 19, simulating the ARM (armeabi-v7a)
processor.

From Figure-4(a), there is acommon call of IF
statement, which is called under each function in (a). In
(b), it is tested once outside the methods, hence reducing
the number of times the numbers are tested for null. The
change applied has no effect on their output as shown in
figure.

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13098

Figure-4(a). Original code.

Figure-4(b). Refactored code.

Figure-5(a). Unaltered sourcecode output.

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13099

Figure-5(b). Altered sourcecode output.

CONCLUSIONS

This paper presents Mobile_Analyzer, an analysis
tool for android application to improve android application
testing by applying android best practices of removing
unused classes and reducing repetitive object use within
the code. A case study is presented to illustrate our
approach. The apk is analysed and the bytecode is
refactored based on our proposed method. The refactored
bytecode tend to give less test path than the original
bytecode with about 75%. This extent of difference can be
relative depending on the number of classes and
functionalities of the code. The result also shows no
difference in the application usage. As future work,
automating the process of refactoring is in progress and we
will also be looking at depicting the test path and
displaying the difference in test case being generated.

ACKNOWLEDGEMENT

This research is supported under the Graduate
Research Incentive Grants (GIPS), vote 1256,
UniversitiTun Hussein Onn Malaysia.

REFERENCES

Ahmed, M., Ibrahim, R., and Ibrahim, N. Adaptation
Model for Testing Android Application.In Proceedings of
the 2015 International Conference on Computing
Technology and Information Management.

Alves, E. L., Machado, P. D., Massoni, T., and Santos, S.
T. 2013, May. A refactoring-based approach for test case
selection and prioritization. In Proceedings of the 8th
International Workshop on Automation of Software Test
(pp. 93-99). IEEE Press.

Asaithambi, S. P. R., andJarzabek, S. 2013. Towards test
case reuse: a study of redundancies in android platform
test libraries. In Safe and Secure Software Reuse (pp. 49-
64). Springer Berlin Heidelberg.

Grace, M. C., Zhou, Y., Wang, Z., and Jiang, X. 2012,
February. Systematic Detection of Capability Leaks in
Stock Android Smartphones. In NDSS.

Hecht, G., Rouvoy, R., Moha, N., andDuchien, L.
2015. Detecting Antipatterns in Android Apps (Doctoral
dissertation, INRIA Lille).

International Data Corporation “Android and iOS Squeeze
the Competition, Swelling to 96.3% of the Smartphone
Operating System Market for Both 4Q14 and CY14,
According to IDC”
http://www.idc.com/getdoc.jsp?containerId=prUS2545061
5 (accessed 28/5/2015 Online)

Ko, M., Seo, Y. J., Min, B. K., Kuk, S., and Kim, H. S.
2012, May. Extending UML Meta-model for Android
Application. In Computer and Information Science (ICIS),
2012 IEEE/ACIS 11th International Conference on (pp.
669-674). IEEE.

Kraemer, F. A. 2011. Engineering android applications
based on UML activities. In Model Driven Engineering
Languages and Systems (pp. 183-197).Springer Berlin
Heidelberg.

Machado, P., Campos, J., and Abreu, R. 2013, August.
MZoltar: automatic debugging of Android applications.
In Proceedings of the 2013 International Workshop on
Software Development Lifecycle for Mobile (pp. 9-
16).ACM.

Moghadam, I. H., andCinneide, M. O. 2012, March.
Automated refactoring using design differencing.
In Software Maintenance and Reengineering (CSMR),
2012 16th European Conference on (pp. 43-52). IEEE.

Sony “ApkAnalyzer”
http://developer.sonymobile.com/knowledge-
base/tools/analyse-your-apks-with-apkanalyser/ (accessed
28/5/2015 Online).

Vekris, P., Jhala, R., Lerner, S., and Agarwal, Y. 2012,
October. Towards verifying android apps for the absence
of no-sleep energy bugs. In Proceedings of the 2012
USENIX conference on Power-Aware Computing and
Systems (pp. 3-3). USENIX Association.

Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., and
Wang, X. S. 2013, November. Appintent: Analyzing
sensitive data transmission in android for privacy leakage
detection. In Proceedings of the 2013 ACM SIGSAC
conference on Computer and communications
security (pp. 1043-1054).ACM.

Zhang, Y., Huang, G., Liu, X., Zhang, W., Mei, H., and
Yang, S. 2012, October. Refactoring android java code for
on-demand computation offloading. In ACM SIGPLAN
Notices (Vol. 47, No. 10, pp. 233-248). ACM.

