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ABSTRACT 

Thorough understanding of the rainfall-runoff processes that influence watershed hydrological response is 
important and can be incorporated into the planning and management of watershed resources. Soft computing techniques 
and inferential statistics were used to assess 2 rainfall-runoff models and their runoff predictive accuracy in this article. The 
1954 simplified SCS runoff model was found to be statistically in-significant under two Null hypotheses rejection and 
paved way for the model calibration study to produce regional specific runoff model through calibration according to 
regional hydrological conditions in Peninsula Malaysia. The new runoff model out-performed non-calibrated SCS runoff 
model and reduced its RSS by 27%. A 3D runoff difference model was created as a collective visual representation 
between the (SCS) non-calibrated and calibrated new model, it also showed that both under and over design risks were less 
significant at high CN (urban) area and more profound under higher rainfall depths. On average, rural and forest 
catchments of Peninsula Malaysia faced 7% (lower CN area as much as 22%) CN down scaling adjustment due to regional 
hydrological calibration in order to achieve better runoff predictions.  
 
Keywords: soft computing, inferential statistics, SCS, initial abstraction coefficient ratio. 
 
INTRODUCTION 
 
SCS runoff model 

In 1954, the United States Department of 
Agriculture (USDA), Soil Conservation Services (SCS), 
Natural Resources Conservation Service (NRCS) agency 
proposed a rainfall-runoff prediction model under 
Watershed Protection and Flood Prevention Act to address 
issues in flood management. It also led to the derivation 
and development of curve number (CN) methodology. The 
model was incorporated into many official hydro design 
manuals but many researchers around the world reported 
inconsistent results using the model (Hawkins et al., 
2009), (Ling and Yusop, 2013), (Hawkins, 2014). The 
base rainfall-runoff model was proposed as: 
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Q  = Runoff amount (mm) 
P  = Rainfall depth (mm) 
Ia  = the initial abstraction (mm) 
S  = maximum potential water retention of a 

watershed (mm) 
 

where P > Ia, else Q = 0. The initial abstraction is 
also known as the event rainfall depth required for the 
initiation of runoff. SCS also hypothesized that Ia = λ S = 
0.20S. The value of 0.20 was referred to as the initial 
abstraction coefficient ratio (λ), a correlation parameter 
between Ia and S. The value of 0.20 was proposed as a 
constant (λ value falls within 0 to 1 only). The substitution 
of Ia = 0.20S simplified equation (1) into a common runoff 
prediction model which was adopted by textbooks, design 
manuals and being incorporated into many design software 

and programmes after its inception in 1954. The simplified 
SCS runoff prediction model is: 
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Equation (2) is subjected to a constraint that P > 

0.2S, else Q = 0. However, there were increasing 
evidential study results leaning against the prediction 
accuracy of equation (2) and the hypothesis that Ia = 
0.20S. The literature review of fifty-one worldwide studies 
showed inconsistent runoff results using equation (2), 
many researchers urged to perform regional hydrological 
conditions calibration instead of blindly adopting it as 
proposed by SCS (Hawkins et al., 2009), (Ling and 
Yusop, 2013). This study was inspired by a developed 
methodology from US researchers (Hawkins et al., 2009) 
and utilised numerical analysis algorithm guided by 
inferential statistics to calibrate and derive a new rainfall-
runoff model based on equation (1). New model was 
calibrated according to regional hydrological conditions as 
pertain to the given dataset in Peninsula Malaysia (DID, 
1994). 
 
DATA AND METHODOLOGY 
 
Methodology 

To the best of our knowledge, no attempt was 
made to validate previous research findings by performing 
regional hydrological characteristics calibration on SCS 
base runoff prediction model equation (1) for the entire 
Peninsula Malaysia until now. This study used rainfall-
runoff data from Malaysian Department of Irrigation and 
Drainage (DID), Hydrological Procedure no. 11 (HP11) 
which consists of ninety-seven storm events from nineteen 
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different rural catchments in Peninsula Malaysia (DID, 
1994). Inferential non-parametric statistics was employed 
for two claim assessments set forth by the 1954 SCS 
proposal with two Null hypotheses (Wright, 1997), 
(Howell, 2007), (Rochoxicz, 2011): 
 
Null Hypothesis 1 (H01): Ia = 0.20S globally.  
Null Hypothesis 2 (H02): The value of 0.20 is a constant in 
H01. 
 

The rainfall (P) and runoff (Q) data pairs from 
DID HP11 were used to derive Ia in order to calculate S 
and λ using a developed methodology by US researchers 
(Hawkins et al., 2009), (Ling and Yusop, 2013). The 
difference of rainfall depth (P) and initial abstraction (Ia) 
is the effective rainfall depth (Pe) to initiate runoff (Q) 
thus Pe =P – Ia. Substitute this relationship into equation 
(1), the model can be re-arranged in order to calculate S 
and λ for each P-Q data pair. Bootstrapping, Bias 
corrected and accelerated (BCa) procedure was used to aid 
numerical optimisation technique in the selection of the 
optimum λ value within the 99% confidence interval and 
to assess both hypotheses. Rejection of H01 implies that 
equation (2) is invalid and not applicable for the dataset, 
while H02 rejection indicates that λ is not a constant as 
initially proposed by SCS in 1954 but a variable. Rejection 
of both hypotheses will pave way to derive new λ value. 
The selection of the optimum λ and S value will formulate 
a new calibrated runoff prediction model of Peninsula 
Malaysia. Since optimum λ value is derived from a 
different mathematical scale than the conventional λ = 0.2, 
a correlation must be identified among them (Hawkins, 
2014). The correlation will re-express new derived λ 
runoff model in common parameters used by the 
conventional SCS equation (2) in order to compare and 
assess both models.  

Equation (1) can be rearranged to solve for S (P, 
Q, λ). Different λ will yield different S value, denotes by 
Sλ. New derived λ value will have a corresponding Sλ value 
which is different from S0.2 (where λ = 0.2). By re-
arranging equation (1), the general Sλ formula solved by 
this study was: 
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Q  = Runoff amount (mm) 
P  = Rainfall depth (mm) 
λ  = the initial abstraction coefficient ratio 
 

The correlation between Sλ and S0.2 will re-
express new derived Sλ in term of S0.2 (S0.2 is represented 
by S throughout this report). A 3D runoff difference model 
can then be created as a collective visual representation of 
multiple scenarios to reflect the runoff difference between 
equation (2) and the new calibrated runoff model in order 
to study the runoff prediction difference between the un-

calibrated SCS model and the new calibrated runoff 
model. Although the 3D runoff difference model can be 
expressed with closed form mathematical equation, it is 
difficult and impossible to solve for the minimum or 
maximum runoff difference equations under multiple 
rainfall and CN scenarios as it requires long and tedious 
calculus solving technique on a complex mathematical 
equation. However, with the visual aid of the 3D runoff 
difference model and soft computing technique, data 
mining of this vital information can be achieved.  
 
STATISTICS AND HYPOTHESES ASSESSMENT 
 
Calibrated SCS runoff model 

Ninety-seven λ values were derived from the 
dataset using the methodology as discussed in previous 
section. The study will identify a best collective 
representation of λ value for the dataset in order to 
formulate a new runoff prediction model and benchmark it 
against the empirical model equation (2) where λ was 
assumed to be 0.2 by SCS. The descriptive statistics of the 
of Ninety-seven derived λ values was tabulated in Table-1. 
Stringent bootstrapping technique, bias corrected and 
accelerated (BCa) procedure (2000 samples) was 
conducted at a 99% confidence level on the λ dataset to 
include confidence intervals and aid the selection of an 
optimum λ value (Wright, 1997), (Howell, 2007), 
(Rochoxicz, 2011).   
 

Table-1. BCa results of λ dataset. 
 

 Statistics 
99% BCa 

lower 
Upper 

Mean 0.081 0.052 0.123 

Median 
Skewness 
Kurtosis 

Std. Deviation 

0.041 
4.535 

24.075 
0.137 

0.032 0.056 

 
λ optimization study was conducted via 

numerical analyses approach on equation (2). The least 
square fitting algorithm was set to identify an optimum λ 
value by minimizing the residual sum of squares (RSS) 
between final runoff model’s predicted Q and its observed 
values. Due to the skewed λ dataset of this study, the 
optimized numerical analyses procedure focused on λ 
variation within the median confidence interval in order to 
obtain the optimum λ value with 99% significancy. BCa 
results from Table-1 consist of confidence intervals for λ, 
which can also be used to assess Null hypotheses. The 
span of λ confidence intervals (both mean and median) 
will be used to asses H01 while the assessment of H02 will 
be based on the standard deviation of the derived λ dataset 
(Rochoxicz, 2011), (Ling and Yusop, 2014, 2014b).  

The optimization study via numerical analysis 
identified the optimum λ value to be 0.055 from its median 
confidence interval. Substituting the optimum λ value into 
equation (1), the calibrated rainfall runoff prediction 
model was formulated as:  
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Equation (4) is subjected to a constraint that 

P>0.055S0.055, else Q0.055 = 0. As mentioned before, S0.055 

was derived with λ = 0.055 which requires a correlation 
conversion into S on the same scale as λ = 0.2 before 
drawing any further comparison. Given rainfall-runoff 
data pairs, each P-Q pairs will derive different S values 
under λ = 0.055 and 0.2 respectively through equation (3).  
The best statistical significant correlation between those 
two groups was identified by using IBM PASW version 18 
as: 
 

097.1
055.0 055.1 SS                                    (5) 

 
S0.055  = S value (mm) when λ is 0.055 
S = S value (mm) when λ is 0.2 
 

Equation (5) has adjusted R2 = 0.989, Standard 
error = 0.084, p<0.000. SCS also developed a correlation 
equation between S and CN in 1954, the SI unit version of 
the formula was proposed as: 
 

25425400  CNS                                   (6) 

 
S  = S value (mm) when λ is 0.2 
CN  = Curve Number 
 

Substitute equation (5) and (6) into (4) will re-
express equation (4) as:  
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for P > 25.51   097.1100 1CN , else Q0.055 = 0 

 
Substitute equation (6) into (2) will re-express 

equation (2) as:  
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for P > 50.8  1100 CN , else Q0.2 = 0 

 
where P and CN are as defined before, Q0.2 

represents the simplified SCS runoff model and Q0.055 
represents the calibrated runoff new model for Peninsula 
Malaysia. Through the correlation conversion of equation 
(5), optimum λ (0.055) model was re-expressed with 
equation (7) in common term of rainfall depth (P) and CN 
as equation (8) which permits further comparison 
analyses. 
 

3D RUNOFF DIFFERENCE MODEL  
As stated in the introduction, simplified SCS 

equation (2) or (8) gained popularity in many sectors, and 
therefore it is imperative to quantify the runoff difference 
between equation (7) and (8) in order to analyse the runoff 
predictions of the non-calibrated conventional equation (8) 
against the calibrated equation (7). Given P values from 
the dataset (DID, 1994), a 3D runoff difference model 
(Appendix-B) can be constructed with different CN values 
to capture the runoff difference between equation (7) and 
(8) under multiple rainfall depths and CN scenarios. The 
3D runoff difference mathematical model is: 
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where P and CN are as defined before, Qv is the 

runoff difference between two models (between Q0.2 and 
Q0.055). When Qv>0, SCS equation (8) over-predicted 
runoff in comparison to calibrated new runoff equation (7) 
and vice versa.  

The 3D runoff difference model (Appendix-B) is 
demarcated into three major zones. The (light blue) flat 
area until the edge of the outer boundary represents the 
area prior to the initiation of runoff where the condition of 
initial abstraction (Ia) has not been fulfilled thus there is 
neither runoff amount nor any runoff difference between 
equation (7) and (8) yet. The Red colour zone (the valley) 
represents the area where the non-calibrated SCS runoff 
model (8) under-predicted runoff amount as compared to 
the calibrated new runoff model (7) while the coloured 
zones (the hilly slope region) within the inner boundary 
represents runoff over-prediction scenarios. 

The 3D runoff difference model provides a clear 
overview of the runoff prediction difference between 
equation (7) and (8) under different P and CN scenarios. 
One can refer to the 3D runoff difference model and 
extract useful information such as: the minimum under-
prediction amount and the maximum over-prediction 
runoff amount between two models. This vital information 
is almost impossible to be obtained by taking the long and 
tedious second derivative of equation (9) and solving for 
the results. The minimum under-prediction amounts 
indicated by the light dash-line on the 3D runoff difference 
model (Appendix-B) represented the worse under-design 
case incurred by non-calibrated SCS runoff model 
equation (8). On the contrary, the heavy dash line 
represents the worse over-design case. In a nutshell, the 
3D runoff difference model presents the runoff prediction 
errors of the un-calibrated SCS model equation (8) against 
calibrated runoff model (7) under multiple scenarios in 
Peninsula Malaysia.  

New derived λ = 0.055 (alpha=0.01) is a 
significant lower value than the conventional SCS model 
where λ = 0.2 thus P > Ia or P > 0.055 S0.055 will initiate 
runoff ahead of the SCS model (because smaller λ value 
will fulfill initial abstraction requirement first and initiate 
runoff). With this concept, the outer boundary equation 
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can be derived. The initial abstraction constraint of 
equation (4) can be re-expressed to represent the outer 
boundary with the following equation: 
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110051.25 
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P                                 (10) 

 
where P and CN are as defined before. Substitute 

all possible CN values (between 1 and 100) into equation 
(10), a series of P values can be derived and connected to  
represent the outer boundary on the 3D runoff difference 
model before the red colour zone (valley). Equation (10) is 
also known as the “Outer Boundary” equation of the 3D 
runoff difference model.  

The second boundary marked as the “Inner 
Boundary” on the 3D runoff difference model is the 
boundary line where the runoff under-prediction (red 
colour or the valley) zone meets the over-prediction 
(coloured or the hilly region) zone. At the cross over 
boundary line, the runoff difference is equal to zero 
(negative prediction numbers must reach zero point before 
becoming positive prediction numbers). As such, when 
Qv=0 in equation (9), the form can be re-expressed as:  
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where P and CN are as defined before. Equation 

(11) is also known as the “Inner Boundary” equation of 
the 3D runoff difference model.  
 
MODELS COMPARISON 

Calibrated new runoff model (with λ=0.055) 
equation (7) was benchmarked against non-calibrated SCS 
runoff model equation (8) in several ways in order to 
assess their model predictive accuracy. Runoff model’s 
prediction efficiency index (E), residual sum of squares 
(RSS) and the predictive model BIAS were calculated 
with following formulas in order to draw further 
comparison.  
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Q  = Runoff amount (mm) 
n  = Total number of data pairs 
  

RSS value indicates the residual spread from a 
model. Lower RSS indicates a better predictive model. 
Model efficiency index (E) ranges from minus to 1.0 

where index value = 1.0 indicates a perfect predictive 
model. When E<0, the predictive model performs worse 
than using the average runoff value to predict the dataset. 
Predictive model BIAS shows the overall model runoff 
prediction error calculated by the summation of predictive 
model’s residual to indicate the overall model prediction 
pattern. Zero value indicates a perfect overall runoff model 
prediction with no error, negative value indicates the 
overall model tendency of under-prediction and vice versa. 
Predictive model runoff prediction comparison results 
were tabulated in Table-2:  
 

Table-2. Runoff predictive models comparison. 
 

Model 
Calibrated SCS 

model (7) 
Non-calibrated 
SCS model (8) 

E 0.68 0.57 

RSS 
Model BIAS 

6,116 
-0.63 

8,405 
-0.29 

 
CURVE NUMBERS ADJUSTMENT 

Curve number is a dimensionless figure 
developed and proposed by SCS to describe a runoff 
condition of a watershed. Curve number value is mostly 
whole number within the range from 1 to 100. The value 
of 100 describes a highly impervious area where 100% of 
rainfall becomes surface runoff and vice versa.  

It is noteworthy to emphasize that as SCS 
developed CN methodology with the hypothesis that 
λ=0.2, equation (6)  is only applicable when λ=0.2. Any λ 
value other than 0.2 requires a correlation conversion 
between Sλ and S0.2 (S0.2 is represented by S throughout this 
report) prior to the CN calculation with equation (6).  

Given P-Q data pairs (DID, 1994) of this study, 
CN values can be calculated with equation (6) after finding 
S values through equation (3). Under SCS methodology 
(when λ=0.2), CN values were calculated  while  new 
optimum λ=0.015 yielded another series of CN values 
through equation (3), (5) and (6).  These CN values are 
known as adjusted CN values. Adjusted CN values show 
CN values adjustment due to λ variation away from the 
initial λ value proposed by SCS (where λ=0.2). The 
optimum λ value is almost 75% less than that proposed by 
SCS, and therefore adjusted CN values are all below than 
CN values calculated under SCS methodology. CN 
adjustment percentage was calculated and plotted against 
SCS CN values (where λ=0.2) in Figure-1 to depict the CN 
adjustment percentage trend in Peninsula Malaysia.  

This study identified a CN adjustment percentage 
trend equation between two λ groups in Peninsula 
Malaysia as pertain to the dataset to be: 
 
CNAdj (%) = 48.562 LN(CN) – 223.008   (15) 
 
CN  = Curve number of a watershed (when 

λ=0.2)  
CNAdj (%)  = Curve number adjustment (%) 
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Equation (15) has adjusted R square = 0.999, 
Standard error = 0.168, p< 0.000. 
  

 
 

Figure-1. CN adjustment percentage as per CN value. 
 
SOFT COMPUTING AND DATA MINING 

As mentioned earlier, it is almost impossible to 
solve for the maxima and minima by taking the second 
derivative of equation (9) in order to obtain the worse 
under and over runoff prediction amounts between two 
runoff models. However, with the visual aid of the 3D 
runoff difference model, it is possible to extract all 
minimum and maximum runoff prediction difference and 
construct statistical significant equations to estimate and 
represent both scenarios. The numerical table in 
Appendix-A used equation (9) to construct the 3D runoff 
difference model (Appendix-B). The bold figures within 
the red colour zone are the minimum runoff prediction 
difference amounts from equation (9) under different CN 
and P scenarios while the bold and yellow highlighted 
figures represent the maximum runoff prediction 
difference amounts. The minimum and maximum amounts 
were extracted and highlighted as shown in Appendix-A. 
The statistical significant correlation equations were 
determined by using the IBM, PASW version 18 and 
proposed as: 
 
Min Qv = 8.817E-5 P2 - 0.04 P - 0.217                (16) 
 
Max Qv = 1.80E-4 P2 + 0.038 P - 0.772                (17) 
 
Min Qv  = minimum under-predicted runoff amounts 

(mm) 
Max Qv  = maximum over -predicted runoff amounts 

(mm) 
P  = Rainfall depth (mm) 
 

Equation (16) has an adjusted R2 = 0.997, 
standard Error = 0.069, p<0.000 while equation (17) has 
an adjusted R2 = 1, standard Error = 0.062, p<0.000 . 
Equation (16) represents the worse under-estimated runoff 
scenarios from non-calibrated SCS equation (8) compared 
to new calibrated runoff model equation (7) while 
equation (17) represents the worse over-estimated runoff 
predictions. Equation (16) can describe the runoff 
difference between two models (light dash line) on the 3D 

runoff difference model while equation (17) describes the 
heavy dash line.  

US researchers first termed “critical rainfall 
amount” (Pcrit) to describe a point where runoff difference 
is zero between two different runoff models (Hawkins et 
al., 2009). The solution of Pcrit was suggested to be 
obtained through numerical analysis solving technique or 
by trial and error procedure (Hawkins, 2014). Through 
algebraic manipulation, we successfully re-arranged 
equation (9) and solved the closed-form equation of Pcrit in 
term of CN (when Qv=0). 
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A = 4B – 2A+ 2B – (1889/111)A 
b = A2 – 8AB – B2 + 2 (1889/111)AB 
c  = 4BA2 – (1889/111)AB2 

 
The technique has proven to be applicable to 

solve for Pcrit of any pairing runoff models. Equation (18) 
solves for the critical rainfall depth amount on the “inner 
boundary”. Critical rainfall depth (mm) satisfies equation 
(11) which is also the rainfall depth amount where 
equation (8) crosses from runoff under-prediction toward 
over-prediction when compared against equation (7). In 
another word, un-calibrated (SCS) runoff model (8) will 
under-predict runoff amount of any rainfall depth from a 
specific CN area below critical rainfall depth amount and 
vice versa.  

In order to further imply from our 3D runoff 
difference model, we are proposing a new conjugate term 
“Critical Curve Number” (CNcrit) to estimate CN area 
where runoff is indifferent between two runoff models 
under a specific P scenario. CNcrit also derives from 
equation (11) as Pcrit. Un-calibrated runoff model (8) will 
under-predict runoff amount in any CN area below critical 
Curve Number value and vice versa.  

Unlike the success with the derivation of closed-
form equation (18), the effort to realise the closed-form 
equation of CNcrit in term of P is still un-fruitful. 
Therefore, soft computing technique was again applied to 
estimate CNcrit value with visual aid from the 3D runoff 
difference model and its numerical table (Appendix-A). 
For example, when P = 160mm, runoff difference between 
two models crosses from runoff under-prediction toward 
over-prediction between CN 42 and 46 (Appendix-A). 
Numerical analysis technique estimated the CNcrit around 
45 to satisfy equation (11) thus using non-calibrated runoff 
model (8) will under-predict runoff amount in any CN area 
below 45. Contrary, any CN area greater than 45 will 
induce runoff over-prediction errors.  
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RESULTS AND DISCUSSIONS 
This study assessed two hypotheses as well as 

model efficiencies of non-calibrated conventional SCS 
model equation (8) and the modified (calibrated) runoff 
prediction model equation (7). A 3D runoff difference 
model was created to capture multiple scenarios of rainfall 
depth and CN. It also reflects runoff prediction errors from 
the non-calibrated SCS runoff model. Researchers across 
the world concluded that SCS runoff prediction model had 
to be calibrated according to regional specific 
characteristics while the conventional SCS runoff 
prediction form of equation (2) or (8) cannot be blindly 
adopted for study use.  

The initial SCS hypothesis of the λ value of 0.2 
(the value was used to simplify SCS base runoff model) as 
a constant was rejected at alpha = 0.01 level because the 
99% BCa confidence interval span does not include the 
value of 0.2 (Table 1) and as such, equation (2) or (8) 
became invalid and not applicable to the dataset of this 
study. H02 was also rejected (at alpha = 0.01 level) because 
the BCa results showed the standard deviation of λ (Table 
1) which indicated its fluctuation nature thus λ is not a 
constant as proposed by SCS in 1954 but a variable. The 
rejection of both Null hypotheses in this study paves the 
way for SCS model calibration. 

This study introduced numerical analysis 
approach guided by non-parametric inferential statistics to 
identify the best collective representation of λ value from 
the dataset for the formulation of a better runoff predictive 
model. The common pitfall in the least square fitting 
algorithm is to wrongly identify local minima as optimum 
solution thus producing inconsistent results. The initial 
guess point for least square fitting algorithm to commence 
an optimization search played an influential role to end 
results. Researchers often started the initial guess point 
with a wild guess which could lead to a wrong conclusion. 
Inferential statistics can be an effective guide to narrow 
the search and identify a statistical significant optimum 
solution in swift and precise manner. Inferential statistics 
narrowed the optimum search band while optimization 
study pin-pointed an optimum value within the BCa 
confidence interval range; both methods supplemented 
each other in this regard. The optimum λ value was 
identified as 0.055 to model rainfall-runoff in this study at 
alpha = 0.01. The rejection of both hypotheses deduced 
that the optimum λ value of 0.055 is a statistical 
significant best collective representation of the dataset. 
The formulation of a calibrated runoff prediction model 
equation (7) using the optimum λ value will have the same 
inherent significant level (at alpha = 0.01). 
 
CONCLUSIONS 

The rejection of both hypotheses concluded that 
equation (2) or (8) is invalid and not statistical significant 
for this study. Therefore, it is imminent to model the 
runoff difference between equation (7) and equation (8) in 
order to produce an adjustment equation to improve and 
adjust the runoff predictability of equation (8) in order for 

SCS practitioners or its software users to perform runoff 
results adjustment.  

The 3D runoff difference model is an effective 
visual aid to study the runoff error distribution of the non-
calibrated SCS runoff model. It is also the collective visual 
presentation of the mathematical equation (9) under 
multiple rainfall depths and CN scenarios. The “Outer” 
and “Inner” boundaries were described by equation (10) 
and (11) respectively. The model also allows swift data 
extraction of the minimum and maximum runoff 
prediction difference between two models to formulate 
equation (16) and (17) in order to estimate the under and 
over design worse risks incurred from non-calibrated SCS 
runoff model. Both design risks were almost impossible to 
be obtained through the long and tedious mathematical 
solution by solving for the second derivative of equation 
(9).  

The 3D runoff difference model also showed that 
both design risks were less significant at high CN area and 
more profound under high rainfall depths. CN adjustment 
percentage increased in lower CN area (as much as 22%) 
which indicated that forested watershed in Peninsula 
Malaysia has largest runoff prediction error with un-
calibrated SCS runoff model. The dataset of this study 
showed that on average, rural catchments of Peninsula 
Malaysia faced 7% CN down scaling adjustment due to 
regional hydrological calibration in order to achieve better 
runoff predictions.  

Pcrit demarcates runoff under predictions from 
over predictions between two runoff models. It also 
provides insight to any return period base design work. 
SCS practitioners can apply equation (16) or (17) to 
estimate worse runoff prediction amounts case of a 
specific rainfall depth scenario and refer to equation (18) 
to determine if the return period base design work is either 
under or over designed and perform as needed corrections.  

The introduction of critical curve number (CNcrit) 
and the closed form equation of the critical rainfall depth 
amount (Pcrit) supplement equation (16) and (17) to enable 
design engineers and SCS practitioners to perform as 
needed runoff prediction results adjustment on the non-
calibrated SCS runoff model (8). Design engineers and 
users of the conventional SCS runoff prediction model are 
encouraged to conduct regional specific calibration for this 
model as proposed and adopt correction equations for this 
particular dataset.  
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APPENDIX 
A. Numerical table of equation (9) 

 

 
 

B. 3D Runoff Difference Model between non-calibrated SCS model and calibrated runoff model 
 

CN

P (mm) 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.059

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.025 ‐0.184

4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.004 ‐0.068 ‐0.267 ‐0.241

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.016 ‐0.097 ‐0.302 ‐0.431 ‐0.213

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.023 ‐0.111 ‐0.304 ‐0.514 ‐0.484 ‐0.163

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.025 ‐0.112 ‐0.290 ‐0.545 ‐0.633 ‐0.469 ‐0.111

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.000 0.000 ‐0.020 ‐0.102 ‐0.265 ‐0.533 ‐0.711 ‐0.684 ‐0.413 ‐0.062

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.013 ‐0.084 ‐0.230 ‐0.478 ‐0.736 ‐0.814 ‐0.682 ‐0.332 ‐0.018

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.004 ‐0.060 ‐0.188 ‐0.407 ‐0.710 ‐0.883 ‐0.867 ‐0.643 ‐0.235 0.022

18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.035 ‐0.142 ‐0.333 ‐0.630 ‐0.894 ‐0.982 ‐0.877 ‐0.574 ‐0.130 0.056

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.014 ‐0.095 ‐0.257 ‐0.516 ‐0.848 ‐1.035 ‐1.040 ‐0.853 ‐0.483 ‐0.022 0.087

22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.001 ‐0.052 ‐0.183 ‐0.405 ‐0.736 ‐1.026 ‐1.136 ‐1.062 ‐0.801 ‐0.375 0.088 0.115

24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.018 ‐0.113 ‐0.298 ‐0.584 ‐0.950 ‐1.168 ‐1.203 ‐1.054 ‐0.726 ‐0.256 0.198 0.140

30 0.000 0.000 0.000 0.000 0.000 0.000 ‐0.044 ‐0.188 ‐0.438 ‐0.803 ‐1.196 ‐1.396 ‐1.405 ‐1.230 ‐0.884 ‐0.398 0.142 0.511 0.200

35 0.000 0.000 0.000 0.000 0.000 ‐0.038 ‐0.192 ‐0.464 ‐0.861 ‐1.305 ‐1.545 ‐1.580 ‐1.426 ‐1.098 ‐0.621 ‐0.051 0.494 0.748 0.239

40 0.000 0.000 0.000 0.000 ‐0.020 ‐0.165 ‐0.443 ‐0.857 ‐1.362 ‐1.667 ‐1.748 ‐1.626 ‐1.323 ‐0.862 ‐0.285 0.333 0.845 0.963 0.270

45 0.000 0.000 0.000 ‐0.002 ‐0.113 ‐0.378 ‐0.793 ‐1.349 ‐1.750 ‐1.899 ‐1.826 ‐1.557 ‐1.120 ‐0.549 0.101 0.736 1.186 1.156 0.296

50 0.000 0.000 0.000 ‐0.051 ‐0.279 ‐0.676 ‐1.239 ‐1.774 ‐2.020 ‐2.017 ‐1.798 ‐1.394 ‐0.839 ‐0.178 0.520 1.144 1.512 1.331 0.317

55 0.000 0.000 ‐0.005 ‐0.162 ‐0.516 ‐1.056 ‐1.710 ‐2.093 ‐2.187 ‐2.036 ‐1.679 ‐1.152 ‐0.495 0.234 0.958 1.552 1.822 1.488 0.335

60 0.000 0.000 ‐0.054 ‐0.333 ‐0.824 ‐1.515 ‐2.087 ‐2.315 ‐2.260 ‐1.969 ‐1.483 ‐0.845 ‐0.103 0.678 1.407 1.952 2.115 1.630 0.351

65 0.000 0.000 ‐0.154 ‐0.564 ‐1.201 ‐1.958 ‐2.373 ‐2.450 ‐2.250 ‐1.825 ‐1.220 ‐0.484 0.327 1.142 1.861 2.343 2.390 1.758 0.365

70 0.000 ‐0.025 ‐0.305 ‐0.854 ‐1.645 ‐2.319 ‐2.578 ‐2.506 ‐2.166 ‐1.615 ‐0.901 ‐0.080 0.787 1.621 2.314 2.722 2.650 1.875 0.376

75 0.000 ‐0.091 ‐0.505 ‐1.202 ‐2.088 ‐2.602 ‐2.707 ‐2.489 ‐2.016 ‐1.346 ‐0.534 0.360 1.269 2.108 2.763 3.087 2.893 1.982 0.387

80 0.000 ‐0.200 ‐0.755 ‐1.606 ‐2.459 ‐2.813 ‐2.766 ‐2.407 ‐1.806 ‐1.026 ‐0.126 0.830 1.768 2.599 3.205 3.440 3.123 2.080 0.396

85 ‐0.015 ‐0.350 ‐1.053 ‐2.055 ‐2.761 ‐2.956 ‐2.760 ‐2.265 ‐1.544 ‐0.662 0.316 1.323 2.279 3.091 3.639 3.778 3.338 2.170 0.405

90 ‐0.063 ‐0.541 ‐1.398 ‐2.460 ‐2.999 ‐3.037 ‐2.696 ‐2.069 ‐1.234 ‐0.259 0.788 1.834 2.798 3.581 4.063 4.103 3.541 2.253 0.412

95 ‐0.146 ‐0.772 ‐1.790 ‐2.803 ‐3.177 ‐3.060 ‐2.577 ‐1.824 ‐0.881 0.178 1.284 2.360 3.321 4.066 4.477 4.415 3.732 2.330 0.419

100 ‐0.262 ‐1.042 ‐2.225 ‐3.089 ‐3.298 ‐3.028 ‐2.407 ‐1.534 ‐0.491 0.645 1.801 2.897 3.846 4.547 4.880 4.714 3.913 2.401 0.425

110 ‐0.594 ‐1.701 ‐2.984 ‐3.497 ‐3.380 ‐2.815 ‐1.932 ‐0.836 0.385 1.651 2.882 3.993 4.896 5.487 5.653 5.275 4.244 2.528 0.436

120 ‐1.055 ‐2.509 ‐3.541 ‐3.706 ‐3.272 ‐2.424 ‐1.299 ‐0.004 1.369 2.733 4.007 5.104 5.932 6.393 6.380 5.790 4.540 2.639 0.445

130 ‐1.644 ‐3.256 ‐3.912 ‐3.733 ‐2.993 ‐1.880 ‐0.532 0.938 2.435 3.871 5.160 6.216 6.948 7.263 7.064 6.264 4.807 2.737 0.453

140 ‐2.357 ‐3.830 ‐4.112 ‐3.598 ‐2.564 ‐1.201 0.349 1.971 3.567 5.048 6.327 7.319 7.937 8.094 7.706 6.701 5.048 2.823 0.460

150 ‐3.153 ‐4.243 ‐4.154 ‐3.314 ‐2.000 ‐0.405 1.326 3.077 4.748 6.250 7.497 8.407 8.897 8.888 8.309 7.105 5.267 2.900 0.466

160 ‐3.827 ‐4.506 ‐4.053 ‐2.897 ‐1.317 0.492 2.384 4.241 5.965 7.467 8.663 9.474 9.825 9.645 8.875 7.478 5.467 2.969 0.471
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