
 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13146

DEFENSE AGAINST CACHE-BASED SIDE CHANNEL ATTACKS

FOR SECURE CLOUD COMPUTING

Munish Chouhan and Halabi Hasbullah

Department of Computer and Information Sciences, Universiti Teknologi Petronas, Perak, Malaysia

E-Mail: munish4111989@gmail.com

ABSTRACT

Cloud computing is a combination of various established technologies like virtualization, dynamic elasticity,

broad band Internet, etc. to provide configurable computer resources as a service to the users. Resources are shared among

many distrusting clients by abstracting the underlying infrastructure using virtualization. While cloud computing has many

practical benefits, resource sharing in cloud computing raises a threat of Cache-Based Side Channel Attack (CSCA). In this

paper a solution is proposed to detect and prevent guest Virtual Machines (VM) from CSCA. Cache miss patterns were

analyzed in this solution to detect side channel attack. Notification channel between client and cloud service provider

(CSP) is introduced to notify CSP about the consent of client for running the prevention mechanism. Cache decay

mechanism with random decay interval is used as a prevention mechanism in the proposed solution. The performance of

the proposed solution is compared with previous solutions and the result indicates that this solution possess least

performance overhead with a constant detection rate and compatible with existing cloud computing model.

Keywords: security, attack, cloud computing, cache-based side channel attack, cache usage analysis, cache access pattern.

INTRODUCTION

Cloud computing provides configurable computer

resources such as software, operating systems, storage,

computing units, etc as a service to customer (Mell &

Grance, 2009). It also brought software and data from

client datacenter to cloud. Cloud model is referred to a

system setting where any type of software can run on any

hardware architecture (canonical software and hardware),

which means client should not have to change application

code or configuration according to the hardware

architecture of the cloud (Godfrey & Zulkernine, 2013).

Cloud computing has three service models

(Savolainen, 2012) those are Software as a service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a

service (IaaS). First service model provides software

access to client through thin client like browser or a thick

client like some program interface; some of the software is

email, CRM, Billing, and rating system etc. Client can also

change some of the application configuration settings. In

Paas user can install any application on the Operating

System (OS) or other platforms provided on cloud. In Iaas

user can access any computer resource like network,

memory, storage, and install any platform on it. Cloud has

four deployment models and those are private, community,

public, and hybrid. Private cloud is deployed exclusively

for one organization, community cloud is also same as

first but it is for a specific community (group of

consumers sharing same policies, security concerns, etc.).

Public cloud is deployed for general public where all the

resources are shared and at last hybrid is the combination

of any two deployment models from the first three (Mell

& Grance, 2009). Hybrid deployment model comes into

play due to insecurity of client about hosting application or

storing data in a shared environment. In this deployment

model customer needs private cloud inside public cloud,

so that client data or application can be accessed from

anywhere, but is not sharing cloud resources with other

clients (Almorsy, Grundy, & Müller, 2010). Side channel

attacks are one of the reasons behind this insecurity.

Cloud computing security become important with

the popularity of cloud in the computer industry (Stone &

Vance, 2010). Now clients are moving from cloud

computing to secure cloud computing. Cloud computing is

also complicated as new features have been added like

multi-tenancy and elasticity (Almorsy et al., 2010), (Chen,

Paxson, & Katz, 2010). Multi-tenancy (configurable

entities shared between different customers) acceptance

also raised many security concerns about security (Zissis

& Lekkas, 2012). Resource sharing results in side channel

attack, these attacks mainly observe execution time,

memory latencies, and power consumption by processor

when a particular encryption program is running (Zhou &

Feng, 2005).

Computer has many benefits from cache, but

there is one drawback, that is increase in the coupling

between program cache usage pattern and program input,

therefore cache become vulnerable to side channel attacks

(Crane, Homescu, Brunthaler, Larsen, & Franz, 2015).

This drawback of cache is the basis of CSCA. Modern

computer architecture mainly use L3 shared cache and this

shared cache is used to establish a side channel attack by

(Kim, Peinado, & Mainar-Ruiz, 2012) as shown in Figure-

1 where attacker is reading the cache hits and misses by

analyzing the time difference between cache access and

memory access (during cache miss) using RTDSC (Time

Stamp Count)and construct a substantial information from

the victim like encryption keys (Zhang, Juels, Reiter, &

Ristenpart, 2012). In these types of attacks, attacker

accesses the timer or observes the cache usage pattern of

victim’s VM.

mailto:munish4111989@gmail.com

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13147

Figure-1. Cache-based side channel attack using

shared cache.

Cloud clients use Internet to access configurable

resources of cloud. Secure sockets layer and other

encryption based protocols are used for the

communication over Internet, this makes Cloud computing

security is dependent on encryption methods like RSA and

AES. These encryption methods are mathematically strong

but lacks in term of the relationship between their

execution behavior and computer resource usage like

power consumption and cache usage. This weakness of

encryption methods is exploited by CSCA attackers.

Generally CSCA is divided into two types (Kim

et al., 2012) as shown in Figure-2 and those are time

driven cache attacks, and trace driven cache attack.

Figure-2. Types of cache-based side channel attacks.

1) Time driven cache attacks: Attacker analyses the sum

of execution time of a cryptographic process and the

variations in the execution time of a security critical

program running on victim’s VM with different
inputs. Time driven CSCA is further divided into two

types on the basis of attacker’s access to the victim’s
cache.

a) Active time driven attacks: Attacker has access

directly to the cache and timer. It can alter the state of

cache which might result in collisions with the

victim’s cache lines. It also measures the execution
time of interested program with high precision.

b) Passive time driven attacks: Attacker cannot probe or

alter the victim’s cache and also cannot access the
timer. Attackers mainly accesses cache remotely and

thus there is noise due to network delays.

2) Trace driven cache attacks: Attacker analyses the

usage pattern of cache line by the victim. This attack

also requires the local sharing of cache between both

VMs. As in this attack, attacker has more information

about the victim’s application behavior, which makes
this attack method more dangerous than previous

attacks.

Many developments and research works on cloud

computing security is going on in many institutions and

companies to create a secure cloud (Ryan, 2013). Most of

the researchers used a common cloud setting as shown in

Figure-3 for their experiments (Godfrey & Zulkernine,

2013), (Kim et al., 2012), (Zhang, Juels, Oprea, & Reiter,

2011). It consists of two or more virtual machines and a

shared top level cache (L2 or L3 cache) between them.

One virtual machine is behaving like an attacker and

others as victim.

Figure-3. Virtual machines with shared cache in cloud.

To maintain security in cloud without affecting

its performance, cloud service provider needs to deploy

solutions which can secure the cloud from CSCA problem

with less overhead and without violating cloud model

(Ryan, 2013). Mainly CSCA are carried out for extracting

encryption keys and security related information, therefore

strong detection and prevention system is required for

securing client’s VM from CSCA. Previous research work
shows the extraction of encryption key of the program

running on victim’s VM by using CSCA (Zhang et al.,

2012), (Ristenpart, Tromer, Shacham, & Savage, 2009)

and CSCA is also carried out in platform as a service

model and it is already possible in infrastructure as a

service model as described in (Zhang, Juels, Reiter, &

Virtual

Machine 1

Virtual

Machine 2

Hypervisor

L3 Cache

 Core 1 Core 2 Core 3 Core 4

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13148

Ristenpart, 2014), which makes it more important to find a

suitable solution for this problem.

The rest of the paper is organized as follows:

Firstly it describes the problem statement of this research

and after that briefly describes the background of already

existed solutions for the defense against CSCA and then

the methodology of this research. Lastly results are

discussed and conclusion is presented.

PROBLEM STATEMENT

Cloud computing is economical as compared to

the traditional computing because resources are shared

between different clients. Resource sharing is achieved by

using virtualization in cloud, where multiple virtual

machines are sharing same physical machine known as

multi-tenancy. This sharing raises the threat of information

leakage from victim’s VM to attacker through CSCA.
Clients are resistant to multi tenancy due to risk of CSCA

and demand for separate physical machines (Stone and

Vance, 2010), but if everyone wants their own physical

machine, then there is no dissimilarity between cloud and

private datacenter (private datacenter wastes computing

power and storage capacity). Security in computer society

required many assurances, but defense against unexpected

attacks like CSCA is of utmost importance (Zissis and

Lekkas, 2012).

In CSCA attacker analyses the cache usage

pattern of another VM and generates substantial

information (like encryption keys) about the application

running on victim’s VM. In previous solutions there are

either changes needed in client’s application (Shi, Song,

Chen, & Zang, 2011), (Crane et al., 2015), (Kim et al.,

2012) or changes in cloud hardware which violate cloud

model (Fletcher, 2013). Some of the solutions have less

overhead, but not compatible with cloud model and some

are compatible but have high performance overhead. To

address this problem, this research work proposed a

defense method against cache-based side channel attacks

for maintaining the security in cloud.

LITERATURE REVIEW
This section presents the study of various

research papers and journals related to cache-based side

channels attacks CSCA and proposed solutions for CSCA.

Some of the papers are discussed and summarize here.

CSCA performed by Bernstein in (Bernstein,

2005) exploits the collisions between several table lookups

of the cipher to recover the security key of an encryption

program. This attack has three phases:

a) Learning phase: Assume that the CSCA attacker

knows the encryption key of encryption program

running on victim’s VM. In this phase attacker sends
random plaintexts to the cipher program and record

the encryption time for these plaintexts.

b) Attacking phase: Encryption time for different

plaintext is measure in this phase same as in (a). In

this phase unknown encryption key is used.

c) Key recovery: Encryption timing sets of previous two

phases is compared to recover the unknown key.

CSCA detection technique proposed by (Zhang et

al., 2011) called “HOMEALONE”, that uses side channel
to detect the presence of attacker’s activity in its physical
machine by analyzing the cache usage. HOMEALONE is

a client oriented solution, which showed the lack of

security by cloud service provider. This solution monitors

a small part of cache (approx. 1/16th part) and therefore

results in less overhead on processing time. Another

detection technique proposed by (Yu, Gui, & Lin, 2013)

named CSDA, which analyzes the resource utilization to

detect CSCA. It consists of two stages, first one is Host

detection, it uses shape test by observing cache miss

sequence. Second one is guest detection, it uses regularity

test by analyzing the virtual CPU and virtual memory

utilization sequence. The detection rate of this solution is

moderate but with zero false negative rate, which make

this detection solution good for secure cloud computing.

Analyzing resource utilization can help in detecting CSCA

as used in these detection techniques directly or indirectly.

In case of CSCA, monitoring cache utilization can lead to

a better detection technique.

CSCA prevention technique proposed by (Shi,

Song, Chen, and Zang, 2011) protects security-critical

operations of application running on guest VM from

attackers by dynamically partitioning of cache using page

coloring. Application notifies the VM manager and then

VM manager allocate a secure space in cache to the data

of that security critical application. Reserved cache lines

are exclusively allocated to the security sensitive

application and no one else can access it, which makes

cloud secure to a certain level as still attacker can analyze

the timer for that particular program execution or the

power consumption. Another research work by (Kim,

Peinado, and Mainar-Ruiz, 2012) proposed a system-level

defense method for CSCA in the cloud. It reserves a cache

set per core, never remove it from cache, and each VM can

share the reserved cache set for its sensitive data.

Therefore attackers cannot read memory access patterns of

other VMs, which make it difficult to establish CSCA. In

modern computers exclusive L1 cache for every core is

already exist and if the same is done to the higher level

cache then there is no advantage of using more than one

level of cache as it contains the same data present in lower

levels of cache.

Next two prevention techniques by (Godfrey and

Zulkernine, 2013) and (Crane, Homescu, Brunthaler,

Larsen, and Franz, 2015) require changes in the hypervisor

and an addition of a lower level VM respectively. These

solutions are compatible and can be implemented in the

modern cloud. M Godfrey et al. in (Godfrey and

Zulkernine, 2013) classified CSCA into two types:

Sequential CSCA, and Parallel CSCA attacks based on

their implementations and proposed prevention techniques

for both. Selective cache flushing is used against

sequential CSCA, where cache will be flushed in between

prime and trigger steps (to know more about prime probe

trigger method please refer (Wu, Xu, and Wang, 2013)) if

there are chances of CSCA. The presence of CSCA in

physical machine is checked by using taint checking.

Cache partitioning is used against parallel CSCA, where

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13149

cache sets has been divided into different VMs and they

only access them for computation. Although the solution

proposed by S Crane et al. in (Crane et al., 2015)

randomizes the execution flow of program. Many replicas

of software has been generated, their execution paths are

different but semantically same. At runtime application

was randomly switching between these generated replicas,

which make it difficult for attacker to analyses the

behavior of application. These two solutions possess

considerably high performance overhead. The

implementation of later solution is complicated and

requires many changes at client as well as cloud end.

A hardware based solution for preventing CSCA

is proposed by (Fletcher, 2013). This solution contains

secure processor architecture with oblivious RAM

techniques to fleece memory access patterns and

differential power analysis resistance technique to hide

data-dependent power draw and results in the prevention

of privacy leakage. Memory access patterns and variation

in power is also considered in side channel attacks. This

solution is designed at hardware level and therefore it has

least effect on the performance of cloud, but the

implementation of this solution is expensive, as practically

whole cloud infrastructure need to be changed for this

solution.

Table-1. Related work.

References Strengths Limitations Remarks

(Zhang et al.,

2011)

 Detects presence of attacker

VM using side channel

attack.

 Client need to install

detector in their VM.

This solution is client

dependent; it will be more

effective if this solution is at

server side.

(Shi et al., 2011)
 On demand Cache isolation

for any application.

 Need changes in client’s
program.

.

This solution can be used if it

is cloud oriented (only

requires changes in cloud

software).

(Kim et al.,

2012)

 Cloud oriented solution

(only requires changes in

cloud).

 Few changes required in

hypervisor.

 Requires changes in

client’s program.

 Reserving cache lines per

core.

This solution has reasonable

performance overhead, but it

is affecting the actual

meaning of higher level of

cache.

(Godfrey &

Zulkernine,

2013)

 Solution required changes in

hypervisor only.

 High performance

overhead.

 Cache flush will increase

the cache miss rate.

The overhead can be

decreased if a solution

contain detection method also

which restrict the cache

flushing to the most

susceptible cases.

(Yu et al., 2013)
 Detection rate of 60%.

 False negative rate 0.

 High false positive rate.

 High performance

overhead.

This solution can be used in

cloud, if the performance

overhead is less.

(Fletcher, 2013)
 Totally eliminate the

possibility of side-channel

attacks.

 Hardware need to be

changed.

 New cloud infrastructure

required.

This is a hardware based

solution, which makes it

difficult to implement on

cloud.

(Crane et al.,

2015)
 Applicable to every type of

CSCA.

 Need some manual

changes.

 Might not work for all

client programs.

This method requires some

changes in the client’s
application and in case of

security sensitive application;

client might be reluctant for

the changes.

Previous works on defense against CSCA are

compared in Table-1. Some solutions were violating cloud

model (either required change in cloud hardware or in

client application). Some solutions are compatible with

today’s cloud infrastructure, but possess considerably high
performance overhead. From this review, there is an

opportunity to research on a cloud compatible solution

with less overhead for defense against CSCA for secure

cloud computing.

METHODOLOGY

This research proposed a solution to detect and

then prevent client’s security critical program from CSCA.
The proposed solution is based on a cloud setting with two

VMs installed on a same physical machine using bare-

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13150

metal hypervisor sharing highest level cache i.e. L3 cache

as present in Iaas cloud as shown in Figure-3. To

overcome CSCA, this research proposed a solution, which

is more compatible with cloud model and with less

performance overhead. This technique has three steps as

shown in Figure-4:

1. CSCA Detection in cloud by analyzing cache misses

patterns.

2. Check if VM using affected cache (affected by

CSCA) requires security.

3. CSCA prevention by introducing noise in cache.

Figure-4. The proposed solution.

Initially, computeCahceMisses(T) function in

detection algorithm presented in Table-2 uses cache

profiler tool to analyze the cache usage patterns and returns

the cache miss sequence (CMS) for the time interval T.

Then CMS is compared with already computed data about

cache miss sequence during CSCA represented as CCMS

in this paper. This CCMS is computed by repeatedly

executing CSCA on test environment and record the

sequence of cache misses at the time of attack. Positive

result of the comparison between CMS and CCMS

indicates the presence of CSCA.

Table-2. Detection algorithm.

After detection, prevention algorithm in Table-3

verifies if any VM running on affected cache is executing

any security critical application. For Security critical

verification, a notification channel is introduced between

client and cloud service provider for notifying cloud

service provider that client application needs security from

CSCA.

Table-3. Prevention algorithm.

A file is maintained in cloud for storing the

response of clients received via notification channel.

These responses indicate whether client’s VM is running
any encryption program and require security against

CSCA. These responses are in the form of a value of

parameter SECURITYCRITICAL for every VM present

in the cloud. False value of parameter

SECURITYCRITICAL halts the detection process until

another VM is not using the affected cache. True value of

SECURITYCRITICAL (can be checked by using

IsSECURITYCRITICAL() function) enables prevention

mechanism to introduce noise (as shown in Algorithm 2)

in the cache by using the mechanism of cache decay

(Kaxiras, Hu, & Martonosi, 2001). A random function is

used to generate random delay intervals for cache decay

mechanism to randomly turn off and on cache lines. Now

attacker cannot identify the cause of cache miss is because

of eviction of data or cache decay (Keramidas,

Antonopoulos, Serpanos, and Kaxiras, 2008).

Performance overhead (represented as P in the

below Equation (1)) is an additional expense occurring in

addition to normal cost. In this research, it is the variation

in processing time of CPU when proposed solution is

running in the cloud.

P =
�௥௢௖௘௦௦�௡� ௧�௠௘ ��௧ℎ ௣௥௢௣௢௦௘ௗ ௦�௦௧௘௠ ௕� ��௡௢௥௠௔௟ ௣௥௢௖௘௦௦�௡� ௕� �� ∗100 (1)

Existing solutions has continuous performance

overhead as shown in Equation (2), as the changes

required are either static or manipulate cache at continuous

START

Detection Method for CSCA

Is there any side

channel attack? (Table

2)

Check SECURITYCRITICAL for virtual

machines

Is attacker’s co-

resident virtual

machine requires

security?

Prevention method for CSCA (Table 3)

END

Yes

Yes

No

No

Wait for

context Switch

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13151

intervals and performance overhead is calculated as

follows:

 ܺ = �ܻ (2)

where X is total overhead and N is the total

number of times cache state changed. N can be number of

times encrypted program executes on client’s VM or
number of context switches or any another parameter used

to satisfy the condition for running the protection method.

Y is performance overhead generated by single run of

protection method.

Now in the case of proposed solution the

performance overhead is calculated as follows:

 ܺ = �ܻ + ܼ (3)

where n<N and n is the number of times CSCA

detected and Z is the performance overhead by detection

mechanism. The value of Z in the equation (3) is very less

as compared to the difference between n and N, as the

proposed detection mechanism only consists of a single

comparison as key operation. In this solution the

protection mechanism executed after CSCA is detected.

RESULTS

The proposed solution protects client’s VM from
CSCA and is compatible with cloud model with less

processing overhead. As prevention technique will add

some overhead on the victim’s VM, but it is very less as
the prevention technique is executed once the attack is

detected. The protection mechanism in the proposed

solution is introduces noise in cache by using cache decay

as that in (Crane et al., 2015) where noise is introduced by

using software diversity. This leads to an average

overhead of 2%. After observing the cache access patterns

and analyzing different CSCA detection techniques, it is

concluded that the proposed detection mechanism added

1% to 2 % of performance overhead. Therefore, the

expected average performance overhead is 2% to 3%.

Notification channel further reduces the performance

overhead by restricting cloud provider to run the

prevention technique only when the client sends a positive

response through notification channel. Comparison of

performance overhead in Figure 5 clearly shows that the

performance of proposed solution is least as compared to

existing solution. This solution will help cloud service

providers to maintain security as well as multi-tenancy

without affecting cloud performance to achieve secure

cloud computing.

Figure-5. Comparing performance overhead of existing

and proposed solution.

Detection rate of proposed solution depends upon

the preciseness of the information about the CMP at the

time of CSCA. As mentioned in (Yu et al., 2013),

proposed solution also posses detection rate more than

60% and detection rate increases with the increase in

information about the CMP at the time of CSCA. More

information about CMP increases the probability of

deciding whether the current CMP is due to CSCA or not.

The accuracy of deciding whether the current CMP is a

due to CSCA is directly proportional to the accurate

information about the CMP at the time of CSCA. This

accurate information is collected by repeating the CSCA

on cloud and analyzing the cache usage patterns.

Comparison of Detection rate in Table-4 clearly

shows that the proposed solution have the highest

detection rate with no variation as it is in (Zhang et al.,

2011). Proposed solution has no variations as it is

dependent on the cache miss patterns and not on any

particular hypervisor or operating system. The detection

rate increases with the collection of more accurate

information about CMP. Therefore with the increasing

detection rate and no variation makes proposed solution

more efficient than other solutions.

Table-4. Comparing detection rate.

Solution Detection Rate

(Zhang et al., 2011) 15% - 85%

(Yu et al., 2013) 60%

Proposed Solution >60%

CONCLUSIONS

Cloud computing popularity and threats due to

multi-tenancy motivated this research work to make cloud

computing more secure. CSCA is one of the dangerous

attacks in this category and is the prime concern of this

work. This attack is dangerous because it mainly used for

stealing encryption keys and today’s Internet mostly use
encryption based security techniques like secure socket

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13152

layer protocol. To resolve this problem, a solution is

proposed to detect and prevent the CSCA attack, which

outperformed 2% better than existing solutions. Detection

method is based on the cache miss patterns at the time of

CSCA and prevention technique is primarily making

attacker blind by introducing noise in the cache. In

detection mechanism, with the increase in the amount of

precise data about CMP at the time of CSCA also

increases the number of comparisons. These comparisons

can be resolved by separating more frequent CMP form

others. A notification channel has been introduced

between client and cloud service provider to minimize the

performance overhead by this solution. This solution only

required changes in Hypervisor and host operating system

and no changes are required in cloud model. This solution

will help cloud service providers to maintain security as

well as multi-tenancy for clients to run their security

critical applications in a secure cloud.

ACKNOWLEDGEMENT

The authors would like to acknowledge the

management of Universiti Teknologi PETRONAS,

Malaysia for providing financial support to this research

work under postgraduate assistance scheme.

REFERENCES

Almorsy, M., Grundy, J. and Müller, I. 2010. An analysis

of the cloud computing security problem. Paper presented

at the Proceedings of APSEC 2010 Cloud Workshop,

Sydney, Australia, 30
th

 Nov.

Bernstein, D. J. 2005. Cache-timing attacks on AES.

Chen, Y., Paxson, V. and Katz, R. H. 2010. What’s new
about cloud computing security. University of California,

Berkeley Report No. UCB/EECS-2010-5 January,

20(2010), 2010-2015.

Crane, S., Homescu, A., Brunthaler, S., Larsen, P. and

Franz, M. 2015. Thwarting Cache Side-Channel Attacks

through Dynamic Software Diversity.

Fletcher, C. W. 2013. Ascend: An architecture for

performing secure computation on encrypted data.

Citeseer.

Godfrey, M. and Zulkernine, M. 2013. Preventing Cache-

Based Side-Channel Attacks in a Cloud Environment.

Keramidas, G., Antonopoulos, A., Serpanos, D. N. and

Kaxiras, S. 2008. Non deterministic caches: A simple and

effective defense against side channel attacks. Design

Automation for Embedded Systems, 12(3), 221-230.

Kim, T., Peinado, M. and Mainar-Ruiz, G. 2012.

STEALTHMEM: System-Level Protection against Cache-

Based Side Channel Attacks in the Cloud. Paper presented

at the USENIX Security symposium.

Mell, P. and Grance, T. 2009. The NIST definition of

cloud computing. National Institute of Standards and

Technology, 53(6), 50.

Ristenpart, T., Tromer, E., Shacham, H. and Savage, S.

2009. Hey, you, get off of my cloud: exploring

information leakage in third-party compute clouds. Paper

presented at the Proceedings of the 16
th

 ACM conference

on Computer and communications security.

Ryan, M. D. 2013. Cloud computing security: The

scientific challenge, and a survey of solutions. Journal of

Systems and Software, 86(9), 2263-2268.

Savolainen, E. 2012. Cloud service models. Paper

presented at the em Seminar--Cloud Computing and Web

Services, University of Helsinki, Department of Computer

Science, Helsinki.

Shi, J., Song, X., Chen, H. and Zang, B. 2011. Limiting

cache-based side-channel in multi-tenant cloud using

dynamic page coloring. Paper presented at the Dependable

Systems and Networks Workshops (DSN-W), 2011

IEEE/IFIP 41
st
 International Conference on.

Stone, B. and Vance, A. 2010. Companies slowly join

cloudcomputing. New York Times, 18, 2010.

Yu, S., Gui, X. and Lin, J. 2013. An approach with two-

stage mode to detect cache-based side channel attacks.

Paper presented at the Information Networking (ICOIN),

2013 International Conference on.

Zhang, Y., Juels, A., Oprea, A. and Reiter, M. K. 2011.

Homealone: Co-residency detection in the cloud via side-

channel analysis. Paper presented at the Security and

Privacy (SP), 2011 IEEE Symposium on.

Zhang, Y., Juels, A., Reiter, M. K. and Ristenpart, T.

2012. Cross-VM side channels and their use to extract

private keys. Paper presented at the Proceedings of the

2012 ACM conference on Computer and communications

security.

Zhang, Y., Juels, A., Reiter, M. K. and Ristenpart, T.

2014. Cross-Tenant Side-Channel Attacks in PaaS Clouds.

Paper presented at the Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications

Security.

Zhou, Y. and Feng, D. 2005. Side-Channel Attacks: Ten

Years after Its Publication and the Impacts on

Cryptographic Module Security Testing. IACR

Cryptology ePrint Archive, 2005, 388.

Zissis, D. and Lekkas, D. 2012. Addressing cloud

computing security issues. Future Generation Computer

Systems, 28(3), 583-592.

