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ABSTRACT 

In a cervical cancer screening procedure, a patient’s Pap smear slide is presented to determine presence of 
abnormalities. Conventionally, features of individual cells are measured and analysed in the initial screening step. Based on 
the analysis results at the cellular level, the Pap smear slide is classified as positive (abnormal) or negative (normal). 
However, each slide presents data on thousands of cells. Consequently, classifying the slide based on cell-by-cell analysis 
is very time consuming and prone to ‘false negative’ problems. In this paper, we propose group-based classification (GBC) 
approach to classify a slide by measuring the slide data as a whole instead of scrutinizing the cells individually. This means 
measuring the slide’s features once from a group of cells to obtain a diagnosis. We apply two group-based nearest 
neighbour techniques; voting and pooling schemes to label each slide. The performances of the group-based nearest 
neighbour techniques are evaluated against existing k-nearest neighbour classifier in terms of accuracy and area under the 
receiver operating characteristic curve (AUC). The group-based nearest neighbour classifiers show favourable accuracy 
compared to the existing k-nearest neighbour classifier. 
 
Keywords: cervical cancer, classification, K-Nearest neighbour. 
 
INTRODUCTION 

Cervical cancer is known to be a major healthcare 
issue for women all over the world. Indeed, about 528,000 
new cases were reported worldwide in 2012. In the United 
States (US) alone, 12,340 of new cases were estimated, 
and 4,030 victims were expected to die from the disease in 
2013 (American Cancer Society - Cancer Facts and Figure 
2013). To reduce the mortality rate caused by cervical 
cancer, women are encouraged to undertake a cervical 
cancer screening procedure known as a Pap smear or Pap 
test, which was originally introduced by Dr Georgios 
Papanicolaou [1]. In the Pap test, a physician collects 
sample cells from a woman’s cervix and smears or 
deposits them onto a glass slide. Subsequently, the Pap 
smear slide is sent to a pathological laboratory to be 
examined to classify whether the patient’s slide has 
premalignant and malignant cells. 

To classify a Pap smear slide, the cells are 
quantitatively measured and analysed. As discussed in [2], 
there are various approaches to classifying a slide. The 
two main approaches are rare event (RE) and malignancy 
associated changes (MACs). Classifying the slide based on 
a cell-by-cell analysis, as in the RE approach, is very time-
consuming and prone to ‘false negative’ problems [3]. The 
MACs approach is an example of the group-based 
approach that solves the problems of RE-based analysis 
[30-33]. Instead of depending on the availability of 
diagnostic cells and spending time scrutinising thousands 
of cells individually, the MACs approach uses the 
summary statistics of the features in intermediate cells. 
However, using the summary statistics of these cells leads 
to increasing the number of features, or dimensions, which 
makes classifying the slide more difficult. As one method 
of addressing the limitations of using the summary 
statistics as features, group-based classification (GBC) is 

considered a potential solution that takes the raw 
measurements of the cells as a group of features. 

This paper applies group-based classification 
(GBC) approach [5] to automate a medical diagnostic 
procedure-specifically, cervical cancer screening. 
Automated cervical cancer screening involves classifying 
Pap smear slides as either positive (abnormal) or negative 
(normal). In [5], an existing classifier-namely the nearest 
neighbour technique-was exploited to enable GBC 
approach. In this paper, we will apply these GBC 
techniques to a real-world MACs data set to evaluate their 
ability to classify Pap smear slides. The group-based 
nearest neighbour techniques will also be evaluated 
against the existing conventional MACs approach that is 
summary statistics-based classifier, which were developed 
using k-Nearest Neighbour (k-NN) technique, using two 
performance measures: classification accuracy and the 
area under receiver operating characteristic curve (AUC). 
This work differs from [5], where the group-based nearest 
neighbour techniques were evaluated on both, synthetic 
and public domain data sets.  

The paper is organised as follows: Section 2 
describes the classifiers used in the experiment. Section 3 
presents the data set and discusses the experiment 
conducted using the classifiers on the MACs data. Section 
4 presents the results and finally, Section 5 offers some 
conclusions. 
 
THE CLASSIFIERS 

We have categorised the classifiers to be used in 
our experiments into three major types: summary 
statistics-based classifier (conventional MACs approach) 
[10], one-step and two-step group-based classifiers. We 
have developed the summary statistics-based classifiers 
using the  k-NN [11, 12] techniques. The k-NN classifier, 
which is used to estimate the benefit of variants to classify 
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training samples, is a non-parametric classifier for which 
assumptions on data distribution are not required. 
However, it requires us to select a value for parameter k. 
The procedure to select k value for our experiments will be 
presented in Section 3. 

One-step GBC refers to the pooling scheme for 
group-based k-NN -namely GBkNN(P) [5]. The two-step 
group-based classifier is the voting scheme of group-based 
k-NN -namely GBkNN(V). The voting and pooling 
schemes of GBkNN were chosen because of their 
promising performance shown in the Iris data set, the Pap 
smear data set and three types of synthetic data sets 
proposed by [13]. The group-based NN classifiers have 
been applied to simulated data thus far, whereas the 
experiments in this paper use a real-world data set.  

Table-1 and Table-2 are to be used to describe the 
GBkNN(V) and GBkNN(P). As shown in Table 1, let XTE 
denotes a test set of NTE cells, such that XTE = { x 1,…, 

TENx }. Note that, each ith cell, xi  is represented by 

multiple features. Let 
i
lv  denotes votes for each class 

based on the number of nearest neighbours from class l for 

ith sample. Note that 
v
lv  denotes total votes for class l 

based on 
i
lv and, 

p
lv  denotes total votes for class l. Let i

lc
denotes class label for each ith cell and cl denotes a class 
label for XTE. A discussion on how the GBkNN(V) and 
GBkNN(P) will be used to classify the group of cells in 
XTE is briefly described here. 

We have demonstrated the possibility of 
extending non-parametric nearest neighbour methods to 
GBC using accumulated information gained from voting 
processes namely, GBkNN(V). The formulae applied in 
the voting schemes and the base of class label decisions 
are presented in Table- 1 and Table- 2 respectively. In our 
experiment, GBkNN(V) is presented with the raw 
measurements for a group of cells that represent a slide. 
Using the k-NN classifier, these cells will be assigned 
class labels. After all cells in the group have been labelled, 
the number of cells designated normal and abnormal will 
be counted, and the majority vote will be used to 
determine the final class label.  

We have demonstrated the possibility of 
accumulating information on a group of samples based on 
pooling scheme namely, GBkNN(P). In GBkNN(P), the 
total votes of the neighbours from every class are 
accumulated for the group. The group is then labelled in 
accordance with the largest total votes. The formulae 
applied in the pooling scheme and the base of class label 
decisions are presented in Table-1 and Table-2 
respectively.  

In this study, we have applied the k-NN to 
automate the existing MACs data classification approach 
that is the k-NN classifier is presented with the slide 
summary statistics of the cells’ features, such as mean 
and/or variance of XTE. A slide is assigned a class label 
that has majority voting of k neighbours. The use of k-NN 
allows us to compare the existing MACs classification 
approach with the proposed GBkNN(V) and GBkNN(P). 

Table-1. Group based nearest neighbour classifiers: 
group-based  K-NN,  voting and pooling scheme [5]. 

 

Test set, 
XTE 

class l Metric GB k-NN 

x1 
: 
: 
: 
 
TENx  

1
lv  

: 
: 
: 
NTE
lv  

 1 1argmaxl l
l

c v : 

: 
: 
: 

 argmaxTE TEN N
l l

l
c v  

 
 

p

1

TEN
i

l l
i

v v


  v

1

TEN
i

l l
i

v c



pooling 
schemes

voting schemes

 
Table-2. Pooling and Voting schemes for the group-based 

K-NN[5]. 
 

Group-
based 

classifier 
Pooling scheme Voting scheme 

GB k-NN  pargmaxl l
l

vc   vargmaxl l
l

vc  

 
These classifiers have the same ultimate aim: to 

determine a slide’s class membership. However, they 
differ in their approach. The k-NN classifier uses summary 
statistics to classify each slide. The group-based nearest 
neighbour classifiers use the raw measurements of the 
cells as a group to classify each slide. The one-step group-
based nearest neighbour, GBkNN(P) classifier 
accumulates information from the group of cells and 
classify the slide as a whole. The two-step group-based 
nearest neighbour classifier, GBkNN(V) requires sample 
cells to be labelled individually prior to labelling the slide. 
The next section will explain how the experiments are 
conducted in the study. 
 
EXPERIMENTAL SETUP 
 
Pap smear data 

The Pap smear data set used in our research was 
obtained from the Cytology Department, Queensland 
Medical Laboratory (QML). The data set consists of 
MACs cell measurements for a set of Papanicolaou-
stained cervical smear slides. We used data of 139 slides 
for our experiments. According to the QML’s diagnosis, 
99 slides were classified as normal (negative) and the 
other 40 slides were classified as abnormal (positive) [6, 
7]. For our experiments, we randomly selected data for 
1,000 cells from each slide. Each measured cell presented 
a total of 29 features, referred to as {F1,…, F29}. The 
descriptions of these features can be found in [8]. 
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We applied a normalisation transform to ensure 
that all of the measurements of the features for the 139,000 
cells (1,000 cells × 139 slides) had a zero mean and unit 
variance [9] such that all measurements were scaled to the 
range ~N(0,1) [9]. The transformation was class label 
independent; therefore, the mean and variance of each 
class may be different. 
 
Feature selection 

The ultimate aim of a feature-selection phase is to 
determine the features that define class memberships in 
order to eventually improve classification accuracy [21, 
22, 24]. There are two main tasks in the feature-selection 
phase of our experiments: first, determine the optimal 
number of features needed to represent each slide; second, 
determine the optimal subset of features to represent the 
slides. 

As noted earlier, the MACs data consist of 139 
slides, with each comprising 1,000 cells. Each cell 
contains a set of 29 features, {F1,…,F29}. The brief 
descriptions of these features are documented in Table 4; 
they are also the standard features presented in [23]. We 
determined mean, µi  and standard deviation, i for every 
feature, Fi of each slide. As a result, each slide is 
represented by a set of summary statistics, { µ1 … µ29, 
1,…,  29 } as features. We used µi and  i for the 
feature-selection phase because the conventional MACs 
approach uses summary statistics as features to classify 
each slide. Note that to estimate the effectiveness of our 
feature-selection method, we also included an additional 
random feature, F30. We generated 139 observations using 
a uniform distribution function in MATLAB for feature 
F30. The µ30 and  30 of F30 were also determined.  

To determine the optimal number of features for 
our experiments, we used the feature set of summary 
statistics, {µ1 … µ30,  1,…,  30 }. The approach used to 
determine the optimal number of features was to apply an 
inner hold-out within 10-fold cross-validation. Our data 
consist of 99 slides from the normal class and 40 slides 
from the abnormal class. The data are divided into a 
validation set and a training set, and in every fold, 
approximately 90 per cent of the slides are left for training. 
In effect, the training set contains about 90 normal slides 
and 36 abnormal slides for each fold. Therefore, applying 
the inner hold-out, means that in every fold, 30 per cent of 
the training set slides were held as an inner test set 
partition and 70 per cent of the training set slides were 
assigned to an inner training set. 

The slides were then used in the inner training set 
to select 10 feature subsets from the feature set {µ1 … µ30, 
 1,…,  30 } using the ‘plus-l-take-away-r’ algorithm 
[25]. Each selected feature subset was evaluated using the 
Mahalanobis criterion function [9]. The 10 training set 
partitions of the cross-validation resulted in 10 iterations 
of the inner hold-out approach. Ten feature subsets were 
therefore obtained, with each containing up to 10 features. 
Determining the optimal number of features using the 
Mahalanobis criterion function alone is insufficient 
because the criterion is known to increase whenever a new 

feature is added to the subset [26]. Therefore, we used a 
logistic regression classifier [27, 28] to evaluate 
combinations of the features from size 1 to 10 for each 
subset. This means that for every training set partition, the 
inner training set is used to train the logistic regression 
classifier, while the inner test set is used to estimate the 
ROC curve (AUC) of the logistic regression classifier. At 
the end of the 10-fold cross-validation, 10 sets of the AUC 
for every feature subset size are obtained. The results of 
the mean AUC were then plotted against the feature subset 
size. We then considered the number of features with the 
maximum mean AUC and identified eight features. The 
approach used to determine the number of features found 
eight features to be of optimal size. It should be noted that 
determining the feature subsets of size eight within the 10-
fold cross-validation is likely to result in different feature 
subsets to be used by different validation sets in the 
classifier performance-evaluation phase. 

The k-NN classifier was presented with the 
selected features originally from the feature set {µ1 … µ30, 
 1,…,  30}. However, for group-based classifiers, the 
aim is to classify the slide using the cells’ raw 
measurements instead of the slide summary statistics. 
Therefore, to present the slides to the group-based 
classifiers, the selected features are traced to the original 
feature set {F1,…, F30}. For example, if  12, µ 15 and 
20 are selected for summary statistics-based classifiers, 
then F12, F15 and F20 are the features presented to the 
group-based classifiers. Using the selected features from 
the summary statistics to trace the features for group-based 
classifiers may allow us to directly compare the classifiers 
independently of the features used. Therefore, we believe 
that evaluating the performance of the group-based 
classifiers with a potentially (pessimistically) biased 
feature subset is acceptable. The results of our feature-
selection methods are presented in Table-3. 
 
Estimation of k value 

When designing a k-NN classifier, it is important 
to select an optimal number of neighbours, which are 
referred to as k*. The k* selection may influence a k-NN 
classifier’s performance when evaluated on a validation 
set partition. In our experiments, for the k-NN classifier, 
the same inner partition of the training set for feature 
selection is used to determine k* in the 10-fold cross-
validation. In this way, each fold may utilise a different k* 
to evaluate the k-NN classifier on its corresponding 
validation set. 

In k* selection, the inner test set is used to 
evaluate the k-NN classifier’s performance on a set of odd 
values in the range of 3 to 25-for example, k = {3, 5, 
7,…,25}. The odd values are considered because the 
voting neighbours are expected from two classes; 
therefore, it is important to prevent ties. The maximum 
value of 25 is chosen because there will be a maximum 
number of 26 abnormal slides in every training set 
partition. The AUC for the k-NN classifier is evaluated for 
every k value. In each fold, the k* is selected based on the 
maximum AUC on the inner test set.  
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Table-3. Feature subsets selected in every fold for the 
eight-feature experiments. M refers to the mean of the 

feature and S refers to the standard deviation of the 
feature. F refers to the raw measurement of the feature. 

 

Cross-
validation 

Eight-feature subsets 

1 
[S6 S7 S8 S22 M27 S28 S29] 
[F6 F7 F8 F22 F27 F28 F29] 

2 
[M1 M4 S4 M5 M6 M8 S19 S21] 

[F1 F4 F5 F6 F8 F19 F21] 

3 
[S3 S8 S14 M21 M22 S26 M29 S29] 

[F3 F8 F14 F21 F22 F26 F29] 

4 
[S6 S16 S19 M23 M24 S25 S26 S27] 
[F6 F16 F19 F23 F24 F25 F26 F27] 

5 
[S8 S9 S14 M24 M26 S28 M29 S29] 

[F8 F9 F14 F24 F26 F28 F29] 

6 
[S3 M5 M6 S13 M18 S22 S25 M28] 

[F3 F5 F6 F13 F18 F22 F25 F28] 

7 
[S2 S3 S4 S6 S7 S16 S23 S25] 
[F2 F3 F4 F6 F7 F16 F23 F25] 

8 
[S2 S9 S11 S17 S25 M26 M28 S28] 

[F2 F9 F11 F17 F25 F26 F28] 

9 
[S12 M17 M20 M22 S26 M28 M29 S29] 

[F12 F17 F20 F22 F26 F28 F29] 

10 
[S3 M12 S13 S14 M15 M24 M25 S29] 

[F3 F12 F13 F14 F15 F24 F25 F29] 
 

It should also be noted that the same k* is used to 
implement the GBkNN(V) and GBkNN(P) to enable the 
direct comparison of the group-based classifiers 
performance with the k-NN classifier independent of the 
k* value. Therefore, evaluating the performance of the 
GBkNN(V) and GBkNN(P) with a potentially 
(pessimistically) biased k* value is acceptable. 
 
Performance evaluation 

To evaluate the performance of the classifiers, 
stratified 10-fold cross-validation was conducted. A study 
by Breiman et al. [14] demonstrated that 10-fold cross-
validation is an almost unbiased approach for estimating 
classification performance. Stratified 10-fold cross-
validation requires the data set to be divided into 10 
subsets of about equal size. Each subset is assigned a 

representative proportion of slides from every class in the 
data set. Thus, each subset contains approximately 10 per 
cent of the slides from each class, in this case consisting of 
approximately 10 normal slides and four abnormal slides. 
In every fold, one subset is assigned as a validation set, 
and another nine subsets are assigned as a training set. 

The training set is used to design the classifiers, 
and the validation set is used to evaluate the performance 
of the classifiers. The k-NN classifier was developed to 
demonstrate MAC-based classifier. Therefore, the 
summary statistics of the cells are applied to represent 
each slide in the validation set. For the group-based 
classifiers, the original measurements of the cells are used 
instead of slide summaries because group-based classifiers 
are developed to analyse a group of cells to label a slide. 
However, in our experiments, only 100 cells (selected at 
random) were used from every slide of the validation set 
rather than all 1,000 cells in order to reduce the 
computational complexity. 

One of the performance measures used in 
evaluating a classifier’s performance is their accuracy, 
which is determined using equal misclassification costs. 
The accuracy is the probability that the slides in the 
validation set are classified correctly by the classifiers. We 
will obtain 10 sets of accuracy measures for each classifier 
from the 10-fold cross-validation and then use the mean 
accuracy and standard deviation of the accuracy for each 
classifier for performance evaluation. 

In addition to the mean accuracy and its standard 
deviation, we will also use the area under the ROC curve 
(AUC), which was initially presented in [15]. The ROC 
curve gained prominence in medical data analysis because 
it enabled observations to be made on the consequences of 
decisions [16-19]. In our experiments, the ROC analysis 
was used to evaluate the capability of each classifier in 
labelling abnormal slides from the normal slides. Using 
the ROC analysis, four possible outcomes are obtained as 
in Table-4. When a slide is correctly classified as normal, 
it is labelled True Negative (TN). If a slide is incorrectly 
classified as abnormal, it is labelled False Positive (FP). 
Similarly, when a slide is incorrectly classified as normal, 
it is labelled False Negative (FN), and when a slide is 
correctly classified as abnormal, it is labelled True 
Positive (TP).  

 
 

Table-4. Confusion matrix. 
 

True class label 
Predicted class label 

 
Negative Positive 

Negative TN FP Total_Negative 

Positive FN TP Total_Positive 

 Total Negative Prediction Total Positive Prediction N 

 
On each validation set partition, a set of the four 

outcomes will be obtained at various decision threshold 
values. The decision thresholds are varied based on the 
scores assigned to each slide. Table-5 indicates how these 

scores are assigned to each slide by each classifier. The 
values of the probabilities of true positives (1-β) and false 
positives (α) were then plotted as a ROC curve. 
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Table-5. Scoring system of summary statistics-based classifiers and group-based classifiers. 

 

Classifiers Scoring system 

k-NN Number of NN from Class 1 against total number of k neighbours 

GBkNN(V) Number of cells assigned to Class 1 against total number of cells in the test slide 

GBkNN(P) 
Total votes of neighbouring cells that belong to Class 1 against total voting k neighbours of the 

test set samples (k × total cells in the group) 
 

We will consider two ways of combining the 
ROC curves from the 10 different validation partitions in 
presenting the experiment results: pooling and averaging 
[20]: 
 
Averaging: We will calculate the ROC curve (AUC) at 
each successive point of (P(TP), P(FP)) pair for every 
validation set. The AUC is to be estimated using the 
formula of trapezoidal numerical integration described in 
[18]: 
 

i
i

1
AUC ((1 . ) ( (1 ). ))

2
           

where 
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
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
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
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
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



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

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
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ii
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



 

 
There will be 10 sets of AUC to be estimated for 

the 10 validation set partitions. We will use the mean and 
standard deviation of the 10 AUC values to evaluate the 
performance of the classifiers, as recommended by [20]. 
The mean AUC will give an estimate of the true area and 

an estimate of its standard error, which is determined from 
the standard deviation of the 10 AUC values. 
 
Pooling: We will also present an average or ‘group’ ROC 
curve for each classifier, as described in [20]. Thus, we 
will pool the frequencies of TPs and FPs at varying 
decision thresholds, as defined in Table 6, for every 
classifier. At the end of the experiments, we will obtain 10 
sets of these frequencies. These frequencies will then be 
averaged to plot a single ROC curve for every classifier. 
 
RESULTS AND DISCUSSIONS 

This section presents the results of the 
experiments. Table-6 shows the mean accuracy (Mean 
Acc) and mean AUC for the experiments with eight 
features. It also presents the plot of the average ROC 
curves for the classifiers in Figure-1. Overall, group-based 
classifiers show higher mean accuracy and mean AUC 
than the summary statistics-based classifier. Figure-1 
shows that both, GBkNN(V) and GBkNN(P) classifiers 
perform better than the k-NN classifier. GBkNN(P) has the 
best performance among the k-NN classifiers. In fact, 
GBkNN(P) has the maximum AUC for the experiment 
using eight features. Thus, the GBkNN(V) and GBkNN(P) 
classifiers are examples of extended non-parametric 
classifier applicable in Pap smear slide classification 
problem.

 
 

Table-6. Results of means accuracy (Mean Acc) and mean area under the receiver 
operating characteristics (ROC) curve (AUC). 

 

Classifiers Eight features 

 Mean Acc± std dev Mean AUC ±  std dev 

Summary statistics based classifier: k-
NN 

0.757±0.077 0.807±0.080 

Two-step GBC : GBkNN(V) 0.943±0.100 0.966±0.068 

One-step GBC : GBkNN(P) 0.950±0.089 0.978±0.048 
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Figure-1. ROC curve of k-NN, GB k-NN(V) and GB k-
NN(P) classifiers for eight features. 

 
CONCLUSIONS 

The MACs data classification problem clearly 
demonstrates that the additional prior knowledge that a 
group of cells belongs to the same slide (patient) can be 
effectively utilised to reduce misclassifications. The 
apparent finding from the results is that the one-step GBC 
is more effective than classifications that utilise a two-step 
approach. In conclusion, the GBC approach is applicable 
to detecting the MACs phenomenon using the raw 
measurements of the cells as a group. 
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