

A COMPARATIVE ANALYSIS ON FEATURE SELECTION TECHNIQUES FOR CLASSIFICATION PROBLEMS

Munirah M. Y¹, Rozlini, M¹, Nawi N. M¹, Wahid, N.¹ and Shukran M. A. M² ¹Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia ²Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia E-Mail: <u>afizi@upnm.edu.my</u>

ABSTRACT

Feature selection has become the vital step in many data mining application for instances classification. Feature selection eliminates irrelevant attribute to obtain high quality features that may contribute in enhancing classification process and producing better classification results. This study is conducted with the intention to find out the most appropriate features that may lead to the best accuracy for various datasets of same domain, which is medical domain. During the experiments, comparisons were made between six benchmark feature selection methods based on eight medical datasets. Then, the performance were analyzed based on two machine learning algorithms; Naïve Bayes and KNN with and without feature selection in term of F-Measure and ROC on those medical datasets. From the experiment the optimum feature subsets are found. Moreover, the findings effectively support the fact that feature selection helps in increasing the classifier performance with existence of minimum number of features. However, no single feature selection methods that best satisfy all datasets and learning algorithms and this will simplify by assumption that features are independent for a given class variable. Hence, it still enables to obtain the optimal dimensionality of the feature subsets within the respective medical datasets.

Keywords: feature selection, medical datasets, ROC value, F measure, accuracy.

INTRODUCTION

Medical datasets are often classified by a large number of diseases measurements when some of the measurements are not important and irrelevant. This amount of data measurement will lead to low quality, unreliable, redundant and noisy data which affect the process of observing knowledge and pattern during training. Therefore it is vital to produce more reliable data from this amount of large and unimportant data by using feature selection methods (Ashraff *et al*, 2013).

Feature selection is an essential part of knowledge discovery. It is used to improve the classification accuracy and to reduce irrelevant data (Han and Kamber, 2006). The main objective of feature selection is to choose a subset of input variables by eliminating features, which are irrelevant or of no predictive information. By using feature selection methods, quality data is obtained which help raises the quality of medical data classification results.

In the current work, we focus on eight medical datasets obtained from UCI repository. This datasets is varies from the context of attributes and instances. This study employs six future selection methods in order to identify the best possible features subset and then examined the performance of classifiers with those selected features. This paper begins with related works of future selection in medical domain. Then, we will describe our experiments and the results in the next section. Finally we end this paper with a conclusion.

FEATURE SELECTION

Feature selection has been an active and fruitful field of research area in pattern recognition, machine learning, statistics and data mining communities (Han and Kamber, 2006). It is a dimensionally reduction technique

that main goal is to reduce irrelevant data and finding a features that increase classification accuracy. The main objective of feature selection is to choose a subset of input variables by eliminating features, which are irrelevant or of no predictive information. It has been proven in both theory and practice to be effective in enhancing learning efficiency, increasing predictive accuracy and reducing complexity of learned results (Almuallim and Dietterich, 1994), (Koller and Sahami, 1996).

Feature selection framework algorithm

There are four basic steps in a typical feature selection process as shown in Figure-1.

Figure-1. Feature selection process (Hall and Smith, 1997).

- i. The generation procedure to generate the next candidate subset from original feature set
- ii. The evaluation function to evaluate the subset to determine the relevancy towards the classification

task using measure for instances distance, dependency, information and consistency

- Stopping criteria to decide when to stop. This is where it determine the relevant subset or optimal feature subset
- iv. Validation procedure is to check whether the selected feature subset is valid

Related work on feature selection

Feature selection is often applied to optimize the classification process. Numerous feature selection methods have been broadly used for different domains for instances for medical, educational, computer security and agriculture domain (Ashraf *et al*, 2013) (Ramaswami and Bhaskaran, 2009) (Aggarwal, M. and Amrita, 2013) (Phadikar, S. *et al*, 2013). Though, this study will focus on feature selection on medical domain. These studies were reported in Table-1 focusing of medical dataset using various feature selection methods and classification techniques.

Author	Purposes	Techniques	Outcome
Ashraf et. al, 2013	Feature Selection	Correlation based feature selection (CFS), Consistency based subset evaluation (CB), Information gain, Symmetrical uncertainty, Relief (RF), Principle component analysis (PCA)	The study found that feature selection methods are capable to improve the performance of learning algorithms.
Lavanya and Usha Rani, 2011	Feature Selection and classification	Decision tree classifier-CART	The results show that a particular feature selection using CART has enhanced the classification accuracy of a particular dataset
Nahar <i>et al.</i> , 2013	Feature selection and classification	Motivated feature selection process (MFS)	improved the performance especially in terms of accuracy, for most of the classifiers for the majority of the datasets
Shilaskar <i>et al.</i> , 2013	Feature selection and classification	Forward inclusion method Forward selection Backward elimination search techniques Hybrid forward selection techniques	Experimental result shows proposed method able to finds smaller subsets and increases the accuracy of diagnosis.
Chen <i>et al.</i> , 2011	Feature selection	Genetic Algorithm + one nearest neighbor (GA + 1-NN)	Experimental results demonstrate the proposed RS_SVM able to achieve very high classification accuracy and detect a combination of five informative features.
Wang <i>et al.</i> , 2006	Feature selection and classification	Particle Swarm Optimization (PSO) Neural Networks Decision Trees Fuzzy Min–Max Neural Networks (FRE-FMMNN)	Experimental results show that proposed algorithm select the feature more efficient and generate better rules with better classification performance.
Jothi and Hannah Inbarani, 2012	Feature Selection and clustering	Unsupervised Soft Set based Quick Reduct (SSUSQR). KMeans Self Organizing Map (SOM) clustering algorithms	The results show that the proposed method effectively removes redundant features.
Polat and Gunes, 2007	Feature Selection and classification	Fuzzy weighted pre-processing	The reduction attribute able to obtained classification accuracy that very promising
Abraham, Simha and Iyengar (2009)	Feature Selection and classification	Chi Square Wrapper Subset Selector.	Proposed algorithm using generative Naïve Bayesian classifier on the average is more efficient than using discriminative models, Logistic Regression and Support Vector Machine
Chen et. al., (2011)	Feature Selection and classification	Rough set (RS) based supporting vector machine classifier (RS_SVM)	Experimental results demonstrate the proposed RS_SVM able to achieve very high classification accuracy and detect a combination of five informative features.

Table-1. Example of works of feature selection.

Overall, all related work studies found that feature selection methods are capable to improve the performance of learning algorithms. Hence, it increases the accuracy of the classifier because it eliminates irrelevant attributes. High quality features may contribute in enhancing classification process and produce better results. Though our study did not proposed new feature selection method but conduct a benchmark feature selection methods that produce the best possible subset in regard to more accurate and better results.

EXPERIMENTAL RESULTS

Datasets

In this experiment, datasets related to medical domain is chosen from UCI machine learning repository which is publicly available. We have chosen seven datasets that are ranged in sizes. The smallest dataset contains 27 attributes and the largest dataset contains 768 attributes. Number of attributes also ranges from 6 to 69 while all data contains two classes. The description of the datasets is given in Table-2.

Dataset	Instances	Num. of attributes	Num. of attributes after reduction by PCA
Appendicitis	106	7	3
Audiology	226	69	63
Prima Diabetes	768	8	8
Breast Cancer	683	9	7
Heart	270	13	12
Parkinson	195	22	8
Lung Cancer	27	56	21
Liver	345	6	5

Table-2. Datasets characteristics.

The experiments are conducted using WEKA tool which is available publicly and DPSORS tool (Chung and Wahid, 2012). WEKA provides the environment to perform many machine learning algorithm and feature selection methods while DPSORS focus on feature selection using DPSO-RS technique.

In this study, the experiments are conducted using seven datasets with and without feature selection methods. An evaluation of four feature subset methods with rank search (Correlation-based Attribute evaluation (CB), Chi-Square Attribute evaluation (CH), Information-Gain Attribute evaluation (IG) and Symmetrical Uncertainty Attribute evaluation (SU)) (Sayes et al., 2007), one feature reduction method; Princple Component Analysis (PCA) and one feature selection method namely DPSO-RS proposed by Chung and Wahid (2012) was performed to find out the best feature sets. The rank search feature subset methods could assess the relevances of features on the basis of the inherent properties of the data while PCA has been widely used as feature reduction method. Feature selected using DPSO-RS method been proven by Chung and Wahid (2012) for its higher classification accuracy.

Feature selection often increases classifier efficiency through the reduction of the size of the effective

features. Therefore, it is needed to verify the relevance of all the features by performing the above feature selection methods on performance measure to choose the best subsets for a given cardinality. We used NaiveBayes and KNN classification algorithm, to select the final best subset among the best subsets across different cardinalities. Two performance measure; F-Measure and ROC area been used in analyzing the performance of all datasets classification model. These two classifiers are conducted towards the originals datasets and datasets with selected featured with the intention to find out the most appropriate attributes or features that may lead to best accuracy for various datasets of same domain.

The first algorithm is Naïve Bayes from Bayes category. Naïve Bayes classification has been demonstrated to be better than several other classification methods when applied to medical data (Al-Aidaroos, *et al.* 2012). The second algorithm is K-NN from lazy learning category. KNN is the instance based statistical analysis approach to perform data classification. It is tis one of the most widely used for classification problem (Jabbar, *et al.*, (2013). It is the most simple and straightforward classifier which stores all cases and classifies new cases based on similarity measure. Classification is attain by identifying the nearest neighbor to determine the class of a sample.

Table-3. Results for attribute selection methods with appendicitis datasets.

Classifier	Tashniswas	Num. of	Performance		
Classifier	rechniques	attributes	ROC	F-Measure	
kNN	Original	7	0.752	0.825	
	PCA	3	0.699	0.804	
	IG	6	0.724	0.799	
	SU	6	0.724	0.799	

T-11. 4 D--

1165
PCN
100

	СВ	7	0.752	0.825
	СН	6	0.724	0.799
	DPSORS	7	0.752	0.825
	Original	7	0.811	0.86
	PCA	3	0.843	0.86
Naïve Bayes	IG	6	8.29	0.87
	SU	6	0.829	0.87
	СВ	7	0.811	0.86
	СН	6	0.829	0.87
	DPSORS	7	0.811	0.86

www.arpnjournals.com

Table-4. Ro	esuns for	attribute se	election	methods	with at	latology	datasets.	

Classifian	Techniques	Num. of	Performance		
Classifier	rechniques	attributes	ROC	F-Measure	
	Original	69	0.897	0.755	
	PCA	63	0.908	0.731	
	IG	51	0.893	0.739	
kNN	SU	50	0.894	0.718	
	СВ	52	0.901	0.738	
	СН	52	0.734	0.898	
	DPSORS	69	0.897	0.755	
Naïve Bayes	Original	69	0.943	0.677	
	PCA	63	0.927	0.663	
	IG	51	0.946	0.702	
	SU	50	0.948	0.682	
	СВ	51	0.948	0.7	
	СН	52	0.95	0.701	
	DPSORS	69	0.943	0.677	

Table-3 until Table-10 shows results for attribute with and without selection methods. We observed from Table 3 the ROC and F-Measure on Appendicitis dataset. The ROC value is 0.752 and F-Measure value is 0.825 which is highest with 7 attributes with kNN classifier. While for Naïve Bayes classifier, the result is better with 0.843 for ROC with 3 attributes and 0.87 for F-Measure with 6 attributes. Table-4 shows that the ROC and F-Measure on Audiology dataset. We observed that the highest ROC for kNN is 0.908 with 63 attributes and highest F-Measure value is 0.898 with 52 attributes. While for Naïve Bayes classifier, the highest ROC value is 0.948 with 50 attributes and 52 attributes and highest F-Measure is 0.702 value with 51 attributes. However, based on higher accuracy values (72.03%), 50 attributes is selected for ROC.

Table-5. Results for attribute selection methods with PIMA diabetes datasets.

Cleasifier	Tashnisuas	Num. of	Performance	
Classifier	rechniques	attributes	ROC	F-Measure
	Original	8	0.65	0.698
kNN	PCA	8	0.65	0.698
	IG	8	0.65	0.698
	SU	8	0.65	0.698

ISSN 1819-6608

Ģ,

	СВ	8	0.65	0.698
	СН	8	0.65	0.698
	DPSORS	4	0.658	0.683
	Original	8	0.819	0.76
	PCA	8	0.819	0.76
Naïve Bayes	IG	8	0.819	0.76
	SU	8	0.819	0.76
	СВ	8	0.819	0.76
	СН	8	0.819	0.76
	DPSORS	4	0.829	0.769

www.arpnjournals.com

Table-6. Results for attribute selection methods with breast cancer wisconsin datasets.

Classifian	Taabniquaa	Num. of	Performance		
Classifier	rechniques	attributes	ROC	F-Measure	
	Original	9	0.973	0.951	
	PCA	7	0.976	0.959	
1	IG	9	0.628	0.697	
kNN	SU	9	0.628	0.697	
	СВ	9	0.628	0.697	
	СН	9	0.628	0.697	
	DPSORS	8	0.973	0.953	
	Original	9	0.989	0.960	
Naïve Bayes	PCA	7	0.989	0.962	
	IG	9	0.701	0.708	
	SU	9	0.701	0.708	
	СВ	9	0.701	0.708	
	СН	9	0.701	0.708	
	DPSORS	8	0.988	0.962	

Table-5 shows that the ROC and F-Measure on Pima Diabetes dataset. We observed that the highest ROC for kNN is 0.658 with 4 attributes and highest F-Measure value is 0.698 with 8 attributes. While for Naïve Bayes classifier, the highest ROC value is 0.829 and highest F-Measure is 0.769 value both with 4 attributes.

Table-6 shows that the ROC and F-Measure on Breast Cancer Wisconsin dataset. We observed that the

highest ROC for kNN is 0.976 and highest F-Measure value is 0.959 both with 7 attributes. While for Naïve Bayes classifier, the highest ROC is 0.989 with 9 and 7 attributes and F-Measure value is 0.962 with 7 and 8 attributes. Based on higher accuracy values, 7 attributes is selected for both ROC (72.03%) and F-Measure (96.14%).

Classifian	T 1 ·	Num. of	Performance		
Classifier	rechniques	attributes	ROC	F-Measure	
	Original	13	0.75	0.752	
kNN	PCA	12	0.75	0.752	
	IG	10	0.757	0.759	
	SU	10	0.75	0.752	

Table-7. Results for attribute selection methods with heart datasets.

¢,

	СВ	13	0.75	0.752
	СН	10	0.757	0.759
	DPSORS	12	0.759	0.763
	Original	13	0.898	0.837
Naïve Bayes	PCA	12	0.898	0.837
	IG	10	0.898	0.84
	SU	10	0.898	0.837
	СВ	13	0.837	0.898
	СН	10	0.898	0.84
	DPSORS	12	0.898	0.837

www.arpnjournals.com

ARPN Journal of Engineering and Applied Sciences ©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

Table-8. Results for attribute selection methods with Parkinson datasets.

Classifier	Tabatan	Num. of	Perfo	rmance
	recnniques	attributes	ROC	F-Measure
	Original	22	0.967	0.964
	PCA	8	0.867	0.867
12.27	IG	20	0.962	0.959
kNN	SU	20	0.962	0.959
	СВ	20	0.962	0.959
	СН	20	0.962	0.959
	DPSORS	12	0.873	0.752
	Original	22	0.858	0.713
	PCA	8	0.774	0.608
	IG	20	0.861	0.733
Naïve Bayes	SU	20	0.861	0.733
	СВ	20	0.861	0.733
	СН	20	0.861	0.733
	DPSORS	12	0.906	0.928

Table-7 shows that the ROC and F-Measure on Heart dataset. We observed that the highest ROC for kNN is 0.759 and highest F-Measure value is 0.763 with 12 attributes. While for Naïve Bayes classifier, the highest ROC is 0.898 for multiple feature subsets and F-Measure value is 0.898 with 13 attributes. For ROC, we have selected feature subsets with 10 attributes as it hold higher value of accuracy (84.07%).

T able-8 shows that the ROC and F-Measure on Parkinson dataset. We observed that the highest ROC for

kNN is 0.967 and highest F-Measure value is 0.964 with 22 attributes. While for Naïve Bayes classifier, the highest ROC is 0.906 and F-Measure value is 0.928 with 12 attributes. Table-9 shows that the ROC and F-Measure on Lung Cancer dataset. We observed that the highest ROC for kNN is 0.633 with 25 attributes and F-Measure value is 0.65 with 54 attributes. While for Naïve Bayes classifier, the highest ROC is 0.715 and F-Measure value is 0.713 both with 54 attributes.

Table-9. Results for attribute selection methods with lung cancer datasets.

Classifian	Tashuisuas	Num. of	Perfor	mance
Classifier	rechniques	attributes	ROC	F-Measure
kNN	Original	56	0.597	0.368
	PCA	25	0.633	0.390

	IG	54	0.529	0.609
	SU	54	0.529	0.609
	СВ	54	0.529	0.609
	СН	54	0.529	0.609
	DPSORS	54	0.423	0.65
	Original	56	0.635	0.713
	PCA	25	0.674	0.468
	IG	54	0.635	0.713
Naïve Bayes	SU	54	0.715	0.6
	СВ	54	0.635	0.713
	СН	54	0.635	0.713
	DPSORS	54	0.714	0.6

Table-10. Results for attribute selection methods with liver datasets.

Classifier	Tashniswas	Num. of	Performance	
	rechniques	attributes	ROC	F-Measure
	Original	6	0.63	0.629
	PCA	5	0.624	0.641
	IG	1	0.568	0.576
kNN	SU	1	0.568	0.576
	СВ	6	0.640	0.544
	СН	1	0.568	0.576
	DPSORS	6	0.63	0.629
	Original	6	0.64	0.544
	PCA	5	0.619	0.51
	IG	1	0.579	0.566
Naïve Bayes	SU	1	0.579	0.566
	СВ	6	0.630	0.629
	СН	1	0.579	0.566
	DPSORS	6	0.64	0.544

Table-9 shows that the ROC and F-Measure on Lung Cancer dataset. We observed that the highest ROC for kNN is 0.633 with 25 attributes and F-Measure value is 0.65 with 54 attributes. While for Naïve Bayes classifier, the highest ROC is 0.715 and F-Measure value is 0.713 both with 54 attributes.

Table-10 shows that the ROC and F-Measure on Liver dataset. We observed that the highest ROC for kNN is 0.640 with 6 attributes and highest F-Measure value is 0.641 with 5 attributes. While for Naïve Bayes classifier, the highest ROC is 0.64 and F-Measure value is 0.544 with 6 attributes. Table-11 until Table-17 shows results for ROC and F-Measure after the feature been reducing by PCA. The result of Appendicitis show similar values for all attribute selection methods after PCA reduction. The ROC value is 0.843 and F-Measure value is 0.86 for 3 attributes with kNN classifier. While for Naïve Bayes classifier, the result is 0.699 for ROC and 0.804 for F-Measure with 3 attributes.

Classifier	Tashniswas	Num. of	Performance	
	rechniques	attributes	ROC	F-Measure
	IG	46	0.910	0.728
	SU	45	0.900	0.717
kNN	СВ	47	0.907	0.722
	СН	47	0.738	0.911
	DPSORS	63	0.908	0.731
	IG	46	0.934	0.647
	SU	45	0.934	0.642
Naïve Bayes	СВ	47	0.934	0.651
	СН	47	0.93	0.651
	DPSORS	63	0.927	0.663

Table-11. Results for attribute selection methods after PCA reduction with audiology datasets.

Table-12. Results for attribute selection methods after PCA reduction with Pima diabetes datase	ets.
---	------

Classifier	Tachniquag	Num. of	Performance	
	rechniques	attributes	ROC	F-Measure
	IG	8	0.65	0.698
	SU	8	0.65	0.698
NN	СВ	8	0.65	0.698
	СН	8	0.65	0.698
	DPSORS	6	0.607	0.654
	IG	8	0.819	0.76
	SU	8	0.819	0.76
Naïve Bayes	СВ	8	0.819	0.76
	СН	8	0.819	0.76
	DPSORS	6	0.803	0.749

We observed from Table-11 the ROC and F-Measure on Audiology dataset. The ROC value is 0.910 with 46 attributes and F-Measure value is 0.911with 47 attributes with kNN classifier. While for Naïve Bayes classifier, the highest ROC is 0.934 for multiple feature subsets and F-Measure value is 0.663 with 63 attributes. For ROC, we have selected feature subset with 45 attributes as it hold higher value of accuracy (74.34%).

VOL. 11, NO. 22, NOVEMBER 2016

Table-12 shows that the ROC and F-Measure on Pima Diabetes dataset. We observed that the highest ROC for kNN is 0.65 and highest F-Measure value is 0.698 with 8 attributes. While for Naïve Bayes classifier, the highest ROC is 0.819 and F-Measure value is 0.76 with 8 attributes.

Table-13 shows that the ROC and F-Measure on Breast Cancer Wisconsin dataset. We observed that all selection method produce same ROC and F-Measure values with kNN classifier. The ROC is 0.976 and the F-Measure is 0.959 with 7 attributes. While for Naïve Bayes classifier, the highest ROC is 0.989 and F-Measure value is 0.962 with 7 attributes.

Table-13. Results for attribute selection methods after PCA reduction with breast cancer datasets.

Classifian	Techniques	Num. of attributes	Performance	
Classifier			ROC	F-Measure
kNN	IG	7	0.976	0.959
	SU	7	0.976	0.959

Naïve Bayes

CB CH DPSORS IG

SU

CB

CH

DPSORS

0.962

0.962

0.962

0.962

rpnjournals.con	1	
7	0.976	0.959
7	0.976	0.959
7	0.976	0.959
7	0.989	0.962

0.989

0.989

0.989

0.989

www.a

Table-14. Results for attribute selection methods after PCA reduction with heart dataset	ets.
--	------

7

7

7

7

Classifier	Taabniquaa	Num. of	Perfor	mance
	rechniques	attributes	ROC	F-Measure
	IG	9	0.781	0.785
	SU	9	0.781	0.785
kNN	СВ	12	0.758	0.76
	СН	9	0.781	0.785
	DPSORS	11	0.815	0.818
	IG	9	0.869	0.814
	SU	9	0.869	0.814
Naïve Bayes	СВ	12	0.87	0.825
	СН	9	0.869	0.814
	DPSORS	11	0.869	0.836

Table-14 shows that the ROC and F-Measure on Heart dataset. We observed that the highest ROC for kNN is 0.815 and highest F-Measure value is 0.818 with 11 attributes. While for Naïve Bayes classifier, the highest ROC is 0.87 with 12 attributes and F-Measure value is 0.836 with 11 attributes.

Table-15 shows that the ROC and F-Measure on Parkinson dataset. We observed that the highest ROC for kNN is 0.874 and highest F-Measure value is 0.888 with 7 attributes. While for Naïve Bayes classifier, the highest ROC is 0.775 with 7 attributes and F-Measure value is 0.687 with 5 attributes.

Table-16 shows that the ROC and F-Measure on Lung Cancer dataset. We observed that the highest ROC for kNN is 0.576 with 24 attributes and highest F-Measure value is 0.688 with 25 attributes. While for Naïve Bayes classifier, the highest ROC is 0.754 with 12 attributes and F-Measure value is 0.723 with 25 attributes.

Table-15. Results for attribute selection methods after PCA reduction with Parkinson datasets.

Classifier	Techniques	Num. of attributes	Performance	
			ROC	F-Measure
	IG	7	0.874	0.888
	SU	7	0.874	0.888
kNN	CB	7	0.874	0.888
	СН	7	0.874	0.888
	DPSORS	5	0.823	0.871
	IG	7	0.774	0.639
	SU	7	0.774	0.639
Naïve Bayes	CB	7	0.775	0.639
	СН	7	0.774	0.639
	DPSORS	5	0.766	0.687

VOL. 11, NO. 22, NOVEMBER 2016

www.arpnjournals.com

Classifier	Techniques	Num. of attributes	Performance	
			ROC	F-Measure
kNN	IG	24	0.5	0.684
	SU	24	0.576	0.684
	CE	24	0.5	0.684
	CS	25	0.57	0.684
	DPSORS	25	0.565	0.688
Naïve Bayes	IG	24	0.601	0.679
	SU	24	0.601	0.706
	CE	24	0.601	0.679
	CS	25	0.604	0.679
	DPSORS	25	0.754	0.723

 Table-16. Results for attribute selection methods after PCA reduction with lung cancer datasets.

Table-17. Results for attribute selection methods after PCA reduction with liver datasets.

Classifier	Techniques	Num. of attributes	Performance	
			ROC	F-Measure
kNN	IG	1	0.568	0.576
	SU	1	0.568	0.576
	СВ	5	0.624	0.641
	CS	1	0.568	0.576
	DPSORS	5	0.624	0.641
Naïve Bayes	IG	1	0.579	0.566
	SU	1	0.579	0.566
	СВ	5	0.619	0.51
	CS	1	0.579	0.566
	DPSORS	5	0.619	0.51

Table-17 shows that the ROC and F-Measure on Liver dataset. We observed that the highest ROC for kNN is 0.624 and highest F-Measure value is 0.641 with 5 attributes. While for Naïve Bayes classifier, the highest ROC is 0.619 with 5 attributes and F-Measure value is 0.566 with 1 attributes.

Clearly the classifier results with higher ROC and F-Measure reflect the usage of selected attribute from feature selection methods. However for some results, more that one ROC and F-Measure performance analysis produce the same highest value. These values produce the similar total number of selected attributes but with different features subsets. To strengthen the output, we run this similar total number of attributes but with different feature subsets with Naïve Bayes classifier to obtained optimal results. With this it enable us to obtain the optimal dimensionality of the feature subsets.

The top ranking features for further predictive analysis are presented in Table-18.

	Datasets	Original Attributes	Selected attributes
Top ranking attribute numbers based on ROC values	Appendicitis	7	1, 2,3
	Audiology	69	1-8, 11,12,14-20, 24-27, 29, 31, 33, 34,37- 41,43,44,50-67, 69
	Pima Diabetes	8	2, 6, 7, 8

Table-18. Results for attribute selection methods.

Ę,

	Breast Cancer	9	1-7
	Heart	13	1-3, 7-13
	Parkinson	22	1-22
	Lung Cancer	56	1-25
	Liver	6	1-6
Top ranking attribute numbers based on F- Measure values	Appendicitis	7	1, 2, 3
	Audiology	69	1-8, 10, 11, 13-20, 24-27, 29, 32, 33, 37-40, 43, 47- 63
	Pima Diabetes	8	2, 6, 7, 8
	Breast Cancer	9	1-7
	Heart	13	1-13
	Parkinson	22	1-22
	Lung Cancer	56	1-25
	Liver	6	1-5

www.arpnjournals.com

ARPN Journal of Engineering and Applied Sciences © 2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

CONCLUSIONS

In this paper, we carried out a comparative study of six feature selection methods that could help in finding the optimal feature subsets. Benchmarking of this feature selection methods was carried out by applying two classifier models. The results obtained by the current work effectively support the facts that feature selection help in increasing the classifier performance with existence of minimum number of features. However, no single feature selection methods that best satisfy all datasets and learning algorithms. This will simplify by assumption that features are independent for a given class variable.

Future work should compare between selected feature in this study and the associated learning algoritms with regards of accuracy.

REFERENCES

Han, J. and Kamber, M. 2006. Data Mining: Concepts and Techniques. 2nd edition. Morgan Kaufmann, San Francisco, CA.

Almuallim, H. and Dietterich, T. G. 1994. Learning boolean concepts in the presence of many irrelevant features. Artificial Intelligence, vol. 69, no. 1-2, pp. 279-305.

Koller, D. and Sahami, M. 1996. Toward optimal feature selection. In Proceedings of the Thirteenth International Conference on Machine Learning, pp. 284-292.

Hall, M. A. and Smith, L. A. 1997. Feature Subset Selection: A Correlation Based Filter Approach, In 1997 International Conference on Neural Information Processing and Intelligent Information Systems, pp. 855-858. Ashraf, M, Chetty, G. and Tran, T. 2013. Feature selection techniques on thyroid, hepatitis, and breast cancer datasets. International Journal on Data Mining and Intelligent Information Technology Applications (IJMIA), vol. 3, no. 1, pp. 1-8.

Ramaswami, M. and Bhaskaran R. 2009. A study on feature selection techniques in educational data mining. Journal of Computing 1(1): pp. 7-11.

Aggarwal, M. and Amrita. 2013. Performance Analysis of Different Feature Selection Methods in Intrusion Detection. International Journal of Scientific and Technology Research, vol. 2, no. 6.

Phadikar, S., Sil, J. and Kumar Das, A. 2013. Rice diseases classification using feature selection and rule generation techniques. Computers and Electronics in Agriculture, vol. 90, pp. 76–85.

Lavanya, D. and Usha Rani, K. 2011. Analysis of feature selection with classification: Breast cancer datasets, Indian Journal of Computer Science and Engineering (IJCSE), October.

Nahar, J., Imam, T., Tickle, K. S. and Chen, Y. P. 2013. Computational intelligence for heart disease diagnosis: a medical knowledge driven approach, Expert Systems with Applications, 40 (2013) 96-104.

Shilaskar, S and Ghatol, A. 2013. Feature selection for medical diagnosis: evaluation for cardiovascular diseases, Expert Systems with Applications 40 (2013) 4146-4153.

Chen, H. L., Yang, B., Liu, J. and Liu, D.Y. 2011. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis, Expert Systems with Applications 38, 9014-9022.

Wang, X., Yang, J., Jensen, R. and Liu, X. 2006. Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma, Computer Methods and Programs in Biomedicine 83, 147-156.

Jothi, G. and Inbarani, H.H. 2012. Soft Set Based Feature Selection Approach for Lung Cancer Images. International Journal of Scientific Engineering and Research 3(10), 1-7.

Polat, K and Gunes, S. 2007. Medical decision support system based on artificial immune recognition immune system (AIRS), fuzzy weighted pre-processing and feature selection, Expert Systems with Applications, 33 484-490.

Abraham R., Simha J. B. and Iyengar S. S. 2009. Effective Discretization and Hybrid feature selection using Naïve Bayesian classifier for Medical data mining, International Journal of Computational Intelligence Research, Vol.5, No.2.

Chen. HL., Yang, B., Liu, J. and Liu, DY. 2011. A Support Vector Machine Classifier with Rough Set-Based Feature Selection for Breast Cancer Diagnosis, Expert Systems with Applications 38, 9014-9022.

Sayes, Y., Inza, I. and Larranaga, P. 2007. A review of feature selection techniques in bio-informatics, Bio-informatics vol. 23, no. 19, pp. 2507-2517.

Chung YY. and Wahid, N. 2012. A hybrid network intrusion detection system using simplified swarm optimization (SSO), Applied Soft Computing, 12, pp. 3014-3022.

Jabbar, M. A., Deekshatulu, B. L. and Chandra, P. 2013. Heart Disease Classification using Nearest Neighbour Classifier with Feature Subset Selection, Annals. Computer Science Series, vol 11.

Al-Aidaroosm, K. M., Bakar, A. A. and Othman, Z. 2012. Medical Data Classification with Naive Bayes Approach, International Journal of Advancements in Computing Technology, vol. 11, no. 9, pp. 1166-1174.

