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ABSTRACT 

Gas turbines are used in oil platforms, floating liquid natural gas (FLNG) plants, and land based distributed power 
plants to generate power. In Malaysia, as much as 40% of the total electricity (e.g. an estimated 783 MW in Peninsular 
Malaysia, 289 MW in Sarawak, and 42 MW in Sabah) comes from gas turbine driven power plants. Some of the challenges 
in gas turbine operations are stringent safety and emission control requirements, urgent need to reduce life cycle cost, and 
the need to sustain high efficiency regardless of operating conditions, changing fuel cost, electricity tariff and electricity 
demand. The idea that got attention and intended to address these issues is the concept of integrated approach to remaining 
useful life prediction and operation scheduling. The purpose of the present paper is to review the literatures specific to gas 
turbine prognostics. The reviewed methods include regression methods, physics based models, computational intelligence 
(artificial neural network and fuzzy systems, evolutionary-based method), and hybrid approaches. As it turned out, (i) there 
is no readily available method that can be used to integrate reliability information into a prognostics model, (ii) the 
benchmark data from NASA is the only available information that can be used to test new algorithms, (iii) commercial 
softwares like Gate Cycle, PROSIS, and GSP have been used to generate data for diagnostics and prognostics studies, (iv) 
thermoeconomic or exergetic approach seems to be less applied to prognostics.  
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INTRODUCTION 

Stationary gas turbines are widely used as 
mechanical drives and to provide electrical power. They 
operate on Brayton cycle with the compression and 
expansion processes following nonideal behavior, i.e. 
entropy changes different from zero. They are expected to 
have alternative means to control the emission of NOx and 
other greenhouse gases. In a tyical design, Figure-1, a gas 
turbine might be featured by modular design and 
comprised of a multi-stage axial compressor, combustion 
chamber, core turbine and main turbine. The core turbine 
drives the compressor while the main turbine is intended 
to run the generator shaft.  

 

 
 

Figure-1. Typical two-shaft aero-derivative gas turbine 
with power turbine [1]. 

 
Gas turbine efficiency is likely to deteriorate due 

to fouling, corrosion, erosion, foreign object damage, tip 
clearance, or operation related issues. The performance 
drop will lead to wastage of the primary energy, an 
increase in the emission of greenhouse gases, and high 
maintenance cost.  The emerging field of prognostics is 

believed to be ideal to address the highlighted issues as 
well as the challenges related to stringent safety and 
emission control requirements, urgent need to reduce life 
cycle cost, and the need to sustain high efficiency 
regardless of operating conditions, changing fuel cost, 
electricity tariff and electricity demand. The purpose of the 
present paper is to review the literatures specific to gas 
turbine prognostics. The reviewed methods include 
regression methods, physics based models, computational 
intelligence (artificial neural network and fuzzy systems, 
evolutionary-based method), and hybrid approaches. 
Prognostics is ideal to reduce maintenance costs through 
early detection of malfunctions. It might also lead to 
reduced down time, improved planning, and better 
management of assets [2].  In proactive maintenance, the 
capacity to accurately predict performance degradation 
through prognostics is considered an important element. 
Prognostics enables forward estimation of the time to 
failure, hence allowing prolonged time in-service.   
 
THE CONCEPT OF PROGNOSTICS 

Prognostics refer to prediction of the conditions 
at some future time [3]. For prognostics to work, the onset 
of failure has to be detected first. This can be realized 
analysing either a single parameter or a multiple-of 
parameters.  According to ISO 13381-12004(E), 
prognostics requires methods for trend extrapolation, fault 
tree analysis, risk assessment, failure initiation models, 
and failure mode and effect analysis. 
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Figure-2. Structure of a prognostic system [4]. 

 
Figure-2 shows the diagnostics and prognostics 

system architecture as suggested by Greitzer et al. [4]. 
Similar or perhaps either simple or complicated designs 
can also be gotten from [5-8]. After the fault is detected 
and diagnosed, the next step is prognostics in which the 
time to failure or remaining useful life is estimated. Even 
though this might be done based on experts knowledge, 
the proven approach is to use some elements of modeling 
combined with experts knowledge. In terms of information 
required, the designer may rely on monitored data, 
operation data, manufacturers’ data, historical data, or 
company test data. 

 
METHODS APPLIED TO PROGNOSTICS 
  Accurate prediction of time to failure or 
remaining useful life is only possible through full 
knowledge of the maintenance actions taken in the past 
and historical failure data. Once the data is acquired, a 
systematic approach still needs to be searched to define a 
suitable performance indicator. But then the maintenance 
data is often difficult to acquire and integrate with time 
serious model.  Regardless, there have been many reported 
methods, some proposing to adopt fusion of data sources 
and exploitation of a multiple of modeling algorithms. In 
the sequel, the popular methods are considered for further 
study. 
 
Prognostic data 

Prognostics uses a specific modeling method. In 
general, the selection of a particular method is dictated by 
the type of signal available for measurement and the 
expected outcome. It has been observed that, prognostics 
has been researched around the following set of signals.  
 Oil debris/ condition monitoring [5]. 
 Vibration signals[5, 9]. 
 Thermodynamic or gas path signals [2, 6, 7, 10-13]. 
 Lube oil temperature and pressure monitoring[14]. 
 Crack or defect [5] information.  
 Gas leak [4].    
 Signals for the fuel supply system [11]. 
 Blade tip clearance data [15-17].  

 
Vibration, oil debris, lube oil temperature, and lube 

oil pressure are often considered to monitor bearing 
conditions. The gas path signals, on the other hand, are 

mostly intended for performance deterioration due to 
fouling [6, 18], erosion, corrosion, or foreign object 
damage (FOD). The suggested guideline is that the 
parameter for trending should be independent of operating 
conditions[18]. Otherwise, data normalization might be 
needed. 
 
Regression models 

Once the engine performance in the past is 
analyzed by using the thermodynamic methods, gas 
turbine remaining useful life (RUL) could be predicted 
exploiting the historical data. The forecasting methods to 
be used might be as simple as linear, quadratic or 
exponential regression.  
p-th order model [16, 18]: 

  p
ptttt ....);(RUL 2

210      (1) 
 

One parameter double exponential smoothing[6, 18]: 
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In Equation (1) - (3),  0 to p  are unknown 

regression coefficients,   signifies the modeling and 
measurement error,  is the smoothing parameter. The 
regression parameters can be estimated through the 
method of least squares. Ariyur and Jelinek [14] suggested 
sliding window in the context of linear regression, which 
makes their approach different and ideal to filter 
measurement noise. This idea has been applied to 
prognostics using lube oil temperature signal.  

In the research reported by Davison [13], the 
progression of a gas turbine failure was assessed by the 
life ratio which is defined as the ratio of distance between 
healthy  and current state, and healthy operation to failure 
state, equation (5).  
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Where, O is life ratio distance for operating 

point; EFP  is life ratio distance for expected failure point. 

The life ratio data is fitted to a suitable function and 
extrapolated to tell the remaining time before repair is 
required. Davison studied turbine behaviour prediction for 
five fault cases: degrading turbine, inlet blockage, 
degrading compressor, bleed, and outlet blockage. The 
performance measures applied for RUL prediction varies 
from researcher to researcher. Hanachi et al. [19] showed 
the use of efficiency ratio instead of life ratio,  .  
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Bayesian method 
 One of the methods proposed for prognostics 
model development is the method of Bayesian forecasting. 
This method allows the calculation of prior and posterior 
probabilities and uncertainty bounds [12]. It is purely a 
stochastic approach. As such, the method is fundamentally 
based on the modeling of observed data by probability 
density functions, in which the new performance is first 
predicted and latter updated when the measurement data is 
available. Because of the predictor and corrector steps, it 
might also be considered similar to Kalman filter. 
Bayesian method has been applied to civil aerospace gas 
turbines [20] and compressor turbine system[8]. Various 
versions of  Bayesian method  were reported: Bayesian 
Forecasting Method and  Comparison [18], state space 
combined with Bayesian method [21], Bayesian 
Hierarchical Model (BHM) [20], Bayesian forecasting and 
dynamic linear models (DLMs) [22], . Bayesian method 
has been extended by including time-varying noise model. 
In other models the error is assumed to be constant.  
 
Computational intelligence 

Some prognostics studies have employed 
computational intelligence methods to enhance on 
automation, quality of analysis, self learning, and decision 
making capabilities of the resulting prognostics method. 
Timely alerting of incidents are also reported to be better 
served by CI methods. In a recent study, Nieto et al. [23] 
used particle swarm optimization (PSO) combined with 
support vector machines (SVM). PSO was used to 
optimize the SVM parameters. The conclusion stated that 
PSO-SVM model can accurately model the RUL. The 
methods in this category include ANN, fuzzy systems, and 
evolutionary methods. They are generally considered data-
driven except in a situation where hybrid designs are 
adopted in which one of the methods might be based on 
physical principles. ANN have good approximation 
characteristics of nonlinear functions. They are self-
adaptive and require less assumption in the construction of 
a model. They have been applied by many researchers [2, 
4, 10, 24]. Some of the merits reported for ANN include 
improvement in detection time and accuracy [2]. It was 
observed that ANN have been tested for the following 
kind of signals: 

 
 Thermodynamic or gas path[2]. 
 Tip clearance [17]. 
 Fuel system [25]. 

 
The data feed to ANN can be average, standard 

deviation value [2], raw data, or normalized data. Some 
advantages of ANN are adaptation, fault tolerance, pattern 
classification, parallel processing, and feature extraction 
[17]. 

 
Hybrid methods 

There is ample evidence that a combination of 
methods have been adopted to predict remaining useful 
life of a gas turbine. In the outcome reported by DePold et 

al. [2], a robust design for diagnostics and prognostics was 
realized by integrating ANN with statistical methods, 
Kalman filter, Bayesian based decision making and rule 
based analysis.  Ghiocel and Altmann [26] illustrated the 
hybridized use of stochast-neuro-fuzzy systems. 
 
Crack propagation based methods 

Prognostics using physics based models refer to 
the use of crack propagation rate models and cumulative 
damage theory to predict remaining useful life of a system 
under certain loading conditions.  One of the popular 
models in this category is the Paris-Erdogan law [27]. This 
law relates the stress intensity factor (SIF) with the crack 
propagation rate. Integration of this equation provides the 
number of cylces before the part is considered failed. 
 The application of mechanistic models to 
prognostics was demonstrated in the work of Kumar et al. 
[28] and Orchard and Vachtsevanos [29]. The main 
challenge in the application of crack propagation models is 
the formulation of SIF models for different loading and 
complex subject geometry.  
 
Bearing life model 

In the work of Orsagh et al. [5], available sensor 
information such as rotor speed, vibration, lube system 
information are linked with fatigue-based damage 
accumulation models. In the same study, remaining useful 
life assessment was done based on stochastic version of 
Yu-Harris bearing life equations. At the core of the 
method is the model for spall progression rate intended to 
explain remaining useful life of the bearing. 
 
Benchmark data for prognostics test 

Gate Cycle, PROSIS, GSP are some of the 
commercially available software that can be used to 
generate data for reference model development and 
validation. Other than that the data provided by NACA 
prognostics data repository is the only available 
information that can be exploited for prognostics system 
design and testing.  It has been used in [21]. 
 
Data fusion techniques 

The sensory data available for prognostics might 
be many. Hence data fusion methods are required to 
exploit the data to the maximum. In a simplest example, 
data fusion could mean combining rotating speed with the 
monitored vibration signals [5, 10]. In a complicated case, 
however, it might amount to processing thermodynamic 
measurements, vibration signals, lube oil temperatures and 
pressures, and experience based knowledge.  In the study 
reported by Xu et al. [30], comentropy theory was applied 
for the same purpose. Data fusion provides (i) more 
accurate and robust estimation of remaining useful life, (ii) 
reduced false alarm rates in early fault detection, and (iii) 
better confidence level in predicting remaining useful life 
[10]. It was observed that data fusion was carried out at 
different levels [5]: sensory signal processing, diagnostics, 
incorporation of experienced knowledge. The need for 
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data fusion was also emphasized in many research 
papers[3, 25, 31].  
 
DISCUSSION 

Several methods have been applied to the design of 
gas turbine prognostics and useful life predictions. Some 
of them are analytical approach, artificial neural networks, 
support vector machines, Dempster-Shafer regression, 
Bayesian Method, regression models, Kalman filters, 
state-space models, principal component analysis, 
independent component analysis and expert systems. As 
for typical features, for instance, the analytical method 
may use performance maps for each component in the gas 
turbine. The first challenge in applying this method is 
handling the effect of measurement errors and operations 
in transient conditions. The Bayesian approach, on the 
other hand, is a fully data based method and has the 
advantage in that it provides probability distributions. The 
other main observations resulted from the review process 
are as summarized below. 
 There are several published literature addressing gas 

turbine diagnostics and prognostics, but then no 
published research is available on (i) gas turbines 
mostly working at part load (a behavior common in 
combined or cogeneration systems), and (ii) a 
framework that integrates prognostics with reliability 
prediction to benefit from the advantages of both. 
Therefore, it is important to investigate the nature of 
performance /health degradation in gas turbines 
operating at part load, and assess the effect to the 
design of prognostics and reliability prediction. 

 The concept of data fusion has been applied at three 
levels: (i) feature-level, (ii) decision-level, and (iii) 
data-level. Decision-fusion using fuzzy set theory has 
been applied in the work of Zein-Sabatto et al. [7]. As 
reported by Liu et al. [32], few researches targeted the 
development of data-level fusion models. 

 Prognostics and useful life prediction has been mainly 
carried out using either thermal efficiency or power 
output. However, it was observed that other 
parameters like specific fuel consumption and  
temperatures can also be applied [33]. In some cases 
prediction error lower that 2% have also been 
reported.  

 Adopting Bayesian methods in the construction of 
ANN and fuzzy models. Reported studies show that 
the probabilistic nature of this methods were not well 
emphasized. This has lead to the perception that CI 
methods – even though  nonlinear in nature – might  
not be straight forward to deal with uncertainty hence 
limiting their use in prognostics studies.  

 
Finally, the study in gas turbine power plants 

prognostics seems very limited as evidenced by the 
applications reported so far. Even though signals 
commonly classified as gas-path signals, lube system 
signals, vibration signals, etc. are available, due to 
unavailability of a unified approach, only part of it is 
exploited for prognostic studies.  

CONCLUSIONS 
The purpose of this paper is to provide a short review 

on the methods widely used in gas turbine health 
prognostics. Accordingly, several ideas have been 
identified. Finally, it was concluded that 
 Paucity of a benchmark data has limited the method 

selection solely to model-based methods. 
 A pragmatic way would be integrating prognostics 

with diagnostics, and reliability. 
 Data fusion has to be considered to allow reliable 

prognostic outcome. 
Future work would concentrate on application of 

some of the methods to prognostics system design.  
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