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ABSTRACT 

This paper proposed the use of population estimation in a new meta-heuristic called Cuckoo search (CS) 
algorithm to minimize the training error, achieve fast convergence rate and to avoid local minimum problem. The CS 
algorithm which imitates the cuckoo bird’s search behavior for finding the best nest has been applied independently to 
solve several engineering design optimization problems based on cuckoo bird’s behavior. The algorithm is tested on five 
benchmark functions such as Ackley function, Griewank function, Rastrigin function, Rosenbrock function and Schwefel 
function. The performance of the proposed algorithm was compared with Particle Swarm Optimization (PSO), Wolf 
Search Algorithm (WSA) and Artificial Bee Colony (ABC). The simulation results show that the CS with Levy flight out 
performs PSO, WSA and ABC, when the cuckoo population is varied. 
 
Keywords: meta-heuristics, cuckoo search, levy flight, optimization. 
 
INTRODUCTION 

A simple way to look at the nature of the search 
algorithm’s is to divide the algorithm into two categories; 
i.e. Deterministic and stochastic. Deterministic algorithms 
follow a rigorous procedure and the functions are 
repeatable like following the same path. While, stochastic 
algorithm always have some randomness and they do not 
follow the same path twice.  

The word meta-heuristic was coined by Fred 
Glover, and can be considered as a master strategy that 
guides and modifies other heuristics to produce solutions. 
Heuristic means to find or to discover by trial and 
error(X.-S. Yang, 2010). Generally, meta-heuristics 
perform better than the simple heuristics and are suitable 
for global optimization. Many modern meta-heuristic 
algorithms inspired by nature are emerging and becoming 
popular. For example, particles swarm optimization (PSO) 
was inspired by fish and bird swarm intelligence. 
Meanwhile, the Firefly Algorithm is inspired by the 
flashing pattern of tropical fireflies. These nature-inspired 
meta-heuristic algorithms have been used in a wide range 
of optimization problems.  

Recently, a new meta-heuristic search algorithm 
called Cuckoo search (CS) is made available by Yang and 
Deb (X. S. Yang and Deb, 2009; X. S. Yang, 2013). CS 
imitates animal behavior (bird) is proposed to minimize 
the training error, achieve fast convergence rate and avoid 
local minimum problem. The CS algorithm has been 
applied independently to solve several engineering design 
optimization problems based on cuckoo bird’s behavior. 
Based on the idealized rules of CS followed, when 
generate a new solution for a Cuckoo, a Levy flight is 
performed. Various studies have shown that flight 
behavior of many animals and insect has demonstrated the 
typical characteristics of Levy Flight. 

This paper aims to enhance the Cuckoo Search 
(CS) with Levy flight through population estimation. The 
structure of the paper is organized as follows: In the next 
sections, meta-heuristic search algorithms are discussed. 

Section 3 shed some light on the simulation results. 
Section 4 discuss the result comparison of all methods and 
finally the paper is concluded in the Section 5.The CS 
algorithm is trained on five benchmark function and 
compare the proposed search strategy with other popular 
optimization algorithms. The performance of the algorithm 
will be discussed in detail throughout this paper. 
 
SWARM INTELLIGENCE (SI) 

Swarm intelligence (SI) is briefly defined as the 
collective behaviors that result from the local interactions 
of the individuals with each other and with their 
environment. The examples of swarms are bird flocks, fish 
schools and the colony of social insects such as termites, 
ants and bees(D Karaboga and Akay, 2009). According to 
Millonas in 1994, the swarm must satisfy the following 
principles to be considered intelligent(Millonas, 1994): 
(i) The swarm should be able to do simple space and 

time computations (the proximity principle). 
(ii)  The swarm should be able to respond to quality 

factors in the environment (the quality principle). 
(iii) The swarm should not commit its activities along 

excessively narrow channels (the principle of 
diverse response). 

(iv) The swarm should not change its mode of 
behavior upon every fluctuation of the 
environment. 

(v)  The swarm must be able to change behavior 
mode when needed (the adaptability principle). 
 

Besides, human also fell into the domain of 
swarm intelligence, especially some multi-robot systems, 
and also certain computer programs that are written to 
tackle optimization and data analysis problems. However, 
most of the research in this area is inspired from nature, 
especially biological systems. 
 
 
 



                                    VOL. 11, NO. 22, NOVEMBER 2016                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                             13233 

Artificial bee colony (ABC) 
Artificial Bee Colony (ABC) algorithm was 

proposed by Karaboga for solving unimodal and multi-
modal numerical optimization problems(Dervis Karaboga 
and Basturk, 2007). The algorithm simulates the intelligent 
foraging behavior of honey bee swarms. ABC used only 
common control parameters such as colony size and 
maximum cycle number. It is a very simple, robust and 
population based stochastic optimization algorithm. Honey 
bee swarms consists of three essential components such as  
food sources, unemployed foragers and employed foragers 
and the model defines two leading modes of the behavior: 
the abandonment of a source and recruitment to a nectar 
source. 

In ABC system, artificial bees fly around in a 
multidimensional search space and some (employed and 
onlooker bees) choose food sources depending on the 
experience of themselves and their nest mates, and they 
will adjust their positions. Some (scouts) fly and choose 
the food sources randomly without using experience. If the 
nectar amount of a new source is higher than the previous 
one, they will memorize the new position and forget the 
previous one. The position of a food source represents a 
possible solution to the optimization problem and the 
nectar amount of a food source corresponds to the quality 
(fitness) of the associated solution. The number of the 
employed bees is equal to the number of solutions in the 
population. At the first step, a randomly distributed initial 
population (food source positions) is generated. After 
initialization, the population is subjected to repeat the 
cycles of the search processes of the employed, onlooker, 
and scout bees, respectively. After all employed bees 
complete the search process, they share the position 
information of the sources with the onlookers on the dance 
area. Each onlooker evaluates the nectar information taken 
from all employed bees and then chooses a food source 
depending on the nectar amounts of sources(D. Karaboga 
& Basturk, 2008; Dervis Karaboga & Basturk, 2007).  
 
Particle swarm optimization (PSO) 

In past several years, PSO has been successfully 
applied in many research and application areas. Particle 
swarm optimization (PSO) was developed by Kennedy 
and Eberhart in 1995 is a population based stochastic 
optimization technique, inspired by social behavior of bird 
flocking or fish schooling(Kennedy & Eberhart, 1995).The 
system is initialized with a population of random solutions 
and searches for optima by updating  generations. PSO has 
no evolution operators such as crossover and mutation.  
In PSO, the potential solutions, called particles, fly 
through the problem space by following the current 
optimum particles. Each particle keeps track of its 
coordinates in the problem space which are associated 
with the best solution (fitness) it has achieved so far. This 
value is called pbest. Another "best" value that is tracked by 
the particle swarm optimizer is the best value, obtained so 
far by any particle in the neighbors of the particle. This 
location is called lbest. When a particle takes all the 
population as its topological neighbors, the best value is a 
global best and is called gbest. The particle swarm 

optimization concept consists of, at each time step, 
changing the velocity of (accelerating) each particle 
toward its pbest and lbest locations (local version of 
PSO)(Kulkarni & Venayagamoorthy, 2011). Acceleration 
is weighted by a random term, with separate random 
numbers being generated for acceleration toward pbest and 
lbestlocations. 
 
Wolf search algorithm (WSA) 

Based on wolf preying behavior, a new bio-
inspired heuristic optimization algorithm, the Wolf Search 
Algorithm (WSA) was proposed to solve optimization 
problems. WSA is different from bio-inspired meta- 
heuristics because each wolf will hunts independently by 
remembering its prey and attack their prey when in 
appropriate conditions.  In this way, long-range inter-
communication among the wolves that represent the 
searching points for candidate solutions is eliminated 
because wolves are known to stalk their prey in 
silence(Tang, Fong, Yang, & Deb, 2012). Wolves have 
developed semi cooperative characteristics that is, they 
move in a group, but tend to take down their prey 
individually. This detail is important because some 
optimization algorithms, such as swarm-based, focus on 
group coordination whereas this algorithm emphasizes 
individual movements. When hunting, wolves will attempt 
to conceal themselves when approaching their prey. This 
searching agents always look for better position in the 
same way that wolves continuously change their positions 
for better ones with more shelter, fewer terrain obstacles 
or less vulnerability.  
 
Cuckoo search (CS) 

Many improved learning algorithms have been 
proposed to overcome the weakness of gradient-based 
techniques. New meta-heuristic search algorithm, called 
Cuckoo search (CS) developed by Yang and Deb which 
imitates animal behavior (bird) and is useful for global 
optimization. This meta-heuristic search algorithm is 
proposed to minimize the training error, achieve fast 
convergence rate and avoid local minimum problem. The 
CS algorithm hasbeen applied independently to solve 
several engineering design optimization problems based 
on cuckoo bird’s behavior (X. S. Yang & Deb, 2009).The 
aim is to use a new and a potentially better solution 
(cuckoo) to replace a not so good solution in the nests.  In 
the simplest form, each nest has one egg. The algorithm 
can be extended to more complicated cases in which each 
nest has multiple eggs representing a set of solutions.CS is 
based on three idealized rules: 
 
1. Each cuckoo lays one egg at a time, and dumps its egg 

in a randomly chosen nest; 
2. The best nests with high quality of eggs will carry 

over to the next generation; 
3. The number of available hosts nests is fixed, and the 

egg laid by a cuckoo is discovered by the host bird 
with a probability pa  [0, 1].  
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The host bird can either throw the egg away or 
abandon the nest, and build a completely new nest. The 
rule defined above can be approximated by the fraction pa 

 [0, 1] of the n nests that are replaced by new nests (with 
new random solutions) [10]. There are two parameters 
used in the Cuckoo search algorithm that are the 
population size, n and probability of discovery of alien 
eggs, Pa. Once n is changes, Pa will control the elitism and 
the balance of randomization. Few parameters make an 
algorithm less complex. For further understanding of the 
process, refer to the pseudo code for the CS algorithm 
below:  
Step 1: Generate initial population of n host nests xi (i = 

1, 2,..., n) 
Step 2:  
While 
 (t <MaxGeneration) or (stop criterion) 
Step 3:  Get a cuckoo randomly by L´evy flights evaluate 

its quality/fitness Fi 
Step 4: Choose a nest among n (say, j) randomly 
Step 5: if (Fi>Fj ), replace j by the new solution; 
end if 
Step 6: A fraction (pa) of worse nests are abandoned and 

new ones are built; 
Step 7: Keep the best solutions (or nests with quality 

solutions); 
Step 8: Rank the solutions and find the current bestend 

while 
 

Based on three rules of CS, when generate a new 
solution for a Cuckoo, a Levy flight is performed. Levy 
Flights are random walk which the steps lengths are 
heavy-tailed probability distribution. The distance from 
the origin of the random walk tends to stable distribution 
after a large number of steps.When generating a new 
solution xi

t+1 for a Cuckoo i, a Levy flight is performed as 
shown in the Equation: 
xi

t+1 = xi
t+α  levy(λ) 
Where α> 0 is the step size, which should be 

related to the scales of the problem of interest. The product 
 means entry wise multiplications. The random walk via 

Levy flight is more efficient in exploring the search space 
as its step length is much longer in the long run.  
 
RESULTS AND DISCUSSIONS 

In this section, the result and analysis of the 
simulations will be discussed. The proposed Cuckoo 
Search algorithm’s with Levy Flight algorithm are tested 
on five benchmark functions such as Ackley function, 
Griewank function, Rastrigin function, Rosenbrock 
function and Schwefel function. The performance of the 
proposed algorithm was compare with Particle Swarm 
Optimization (PSO), Wolf Search Algorithm (WSA) and 
Artificial Bee Colony (ABC). The performance evaluation 
has been carried out based on its average convergence that 
has the optimal value near to zero. 

Each simulations result of CS algorithm will 
presented in Table form. For more understanding, the 
performance of CS on each benchmark function have been 
highlighted with different colors such as green color for  

best performance (lowest optimal value), blue color for 
second best performance, yellow color for third best 
performance and red color for worst performance (highest 
optimal value). The performance are evaluated based on 
the standard deviation (SD), standard error of mean 
(SEM), and mean. The parameters used are number of 
nests (n) and probability of discovery rate of alien eggs 
(p). 
 
Ackley function 

Ackley is a widely used multimodal test function 
and testing optimization algorithms. Table-1 indicates the 
result of CS algorithm on Ackley function. 
 

Table-1. Result of CS algorithm on Ackley function. 
 

 Mean SD SEM 
n=10,p=0.05 9.55 x 10-6 3.83 x 10-7 5.42 x 10-8 
n=10,p=0.10 9.85 x 10-6 1.99 x10-7 2.82 x 10-8 
n=10,p=0.15 9.77 x 10-6 2.31 x 10-7 3.27 x 10-8 
n=10,p=0.20 9.66 x 10-6 2.70 x 10-7 3.82 x 10-8 
n=10,p=0.25 9.55 x 10-6 5.96  x 10-7 8.43 x 10-8 
n=15,p=0.05 9.82 x 10-6 1.56  x 10-7 2.20 x 10-8 
n=15,p=0.10 9.63 x 10-6 3.33  x 10-7 4.71 x 10-8 
n=15,p=0.15 9.61 x 10-6 3.80  x 10-7 5.37 x 10-8 
n=15,p=0.20 9.47 x 10-6 4.38  x 10-7 6.20 x 10-8 
n=15,p=0.25 9.37 x 10-6 6.60  x 10-7 9.34 x 10-8 
n=20,p=0.05 9.64 x 10-6 4.04 x 10-7 5.71 x 10-8 
n=20,p=0.10 9.46 x 10-6 7.14 x 10-7 1.01 x 10-7 
n=20,p=0.15 9.51 x 10-6 4.73 x 10-7 6.68 x 10-8 
n=20,p=0.20 9.38  x 10-6 6.53  x 10-7 9.23 x 10-8 
n=20,p=0.25 9.50 x 10-6 4.98 x 10-7 7.05 x 10-8 
n=25,p=0.05 9.57 x 10-6 4.44 x 10-7 6.28 x 10-8 
n=25,p=0.10 9.40 x 10-6 4.62 x 10-7 6.53 x 10-8 
n=25,p=0.15 9.44 x 10-6 5.02 x 10-7 7.10 x 10-8 
n=25,p=0.20 9.27 x 10-6 4.99 x 10-7 7.05 x 10-8 
n=25,p=0.25 9.24  x 10-6 7.10 x 10-7 1.00 x 10-7 
n=30,p=0.05 9.46 x 10-6 5.62  x 10-7 7.95 x 10-8 
n=30,p=0.10 9.29 x 10-6 7.18  x 10-7 1.02 x 10-7 
n=30,p=0.15 9.38 x 10-6 6.32  x 10-7 8.94 x 10-8 
n=30,p=0.20 9.59 x 10-6 6.99  x 10-7 9.89 x 10-8 
n=30,p=0.25 9.35 x 10-6 5.91  x 10-7 8.36 x 10-8 
n=35,p=0.05 9.29 x10-6 8.41  x 10-7 1.19 x 10-7 
n=35,p=0.10 9.29 x10-6 7.17  x 10-7 1.01 x 10-7 
n=35,p=0.15 9.16 x 10-6 8.17  x 10-7 1.16 x 10-7 
n=35,p=0.20 9.62 x 10-6 6.46  x 10-7 9.13 x 10-8 
n=35,p=0.25 9.28 x 10-6 7.12  x 10-7 1.01 x 10-7 
n=40,p=0.05 9.39 x 10-6 6.03  x 10-7 8.53 x 10-8 
n=40,p=0.10 9.33 x 10-6 6.24  x 10-7 8.82 x 10-8 
n=40,p=0.15 9.29 x 10-6 8.21  x 10-7 1.16 x 10-7 
n=40,p=0.20 9.35 x 10-6 4.44  x 10-7 6.27 x 10-8 
n=40,p=0.25 9.38 x 10-6 7.21 x 10-7 1.02 x 10-7 

 
Based on Table-1, the best performance of CS 

algorithm on Ackley function that have the lowest optimal 
value are on parameter n=35,p=0.15 with 9.16 x 10-6.  The 
performance in terms of SD and SEM are 8.17 x 10-7 and 
1.16 x 10-7 respectively. The second performance are on 
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parameter n=35,p=0.25 with optimal value 9.21 x 10-6, SD 
value of 7.12 x 10-7 and SEM, 1.01 x 10-7. The third 
optimal value that shows effective performance are 9.24 x 
10-6 with the parameter n=25,p=0.25. The performance in 
terms of SD and SEM are 7.10 x 10-7 and 1.00 x 10-7 

respectively.  The highest optimal value where the value 
not close to zero are on parameter n=10,p=10 with 9.85 
x10-6, SD value of 1.99   x10-7   and SEM, 2.82   x 10-8. 
 

 
 

Figure-1. Performance of CS algorithm on 
Ackley function. 

 
Based on Figure-1, the best performance of CS 

algorithm on Ackley function that have the lowest optimal 
value are on parameter n=35,p=0.15 with 9.16 x 10-6. The 
second performance are on parameter n=35,p=0.25 with 
optimal value 9.21 x 10-6. The third optimal value that 
shows effective performance are 9.24 x 10-6 with the 
parameter n=25, p=0.25. The highest optimal value where 
the value not close to zero are on parameter n=10,p=10 
with 9.85 x10-6. 
 
Griewank function 

Griewank function is similar to Rastrigin 
function. It has many widespread local minima. However, 
the location of the minima is regularly distributed. Table-2 
indicates the result of CS algorithm on Griewank function. 
 
 

Table-2. Result of CS algorithm on Griewank function. 
 

 Mean SD SEM 

n=10,p=0.05 9.70 x 10-6 3.06 x 10-7 4.33 x 10-8 

n=10,p=0.10 9.65 x 10-6 3.43 x 10-7 4.86 x 10-8 

n=10,p=0.15 9.59 x 10-6 4.20 x 10-7 5.94x 10-8 

n=10,p=0.20 9.48 x 10-6 5.83 x 10-7 8.25 x 10-8 

n=10,p=0.25 9.31 x 10-6 9.06 x 10-7 1.28 x 10-7 

n=15,p=0.05 9.46 x 10-6 6.04 x 10-7 8.54 x 10-8 

n=15,p=0.10 9.24 x 10-6 8.75 x 10-7 1.24 x 10-7 

n=15,p=0.15 9.20 x 10-6 8.37 x 10-7 1.18 x 10-7 

n=15,p=0.20 9.12 x 10-6 8.93 x 10-7 1.26 x 10-7 

n=15,p=0.25 9.10 x 10-6 8.38 x 10-7 1.19 x 10-7 

n=20,p=0.05 9.22 x 10-6 9.76 x 10-7 1.38 x 10-7 

n=20,p=0.10 9.25 x 10-6 7.98 x 10-7 1.13 x 10-7 

n=20,p=0.15 9.17 x10-6 7.36 x 10-7 1.04 x 10-7 

n=20,p=0.20 8.96 x10-6 8.71 x 10-7 1.23 x 10-7 

n=20,p=0.25 8.87 x 10-6 1.07 x 10-6 1.51 x 10-7 

n=25,p=0.05 9.04 x 10-6 9.34 x 10-7 1.32 x 10-7 

n=25,p=0.10 8.92 x 10-6 9.43 x 10-7 1.33 x 10-7 

n=25,p=0.15 8.96 x 10-6 8.26 x 10-7 1.17 x 10-7 

n=25,p=0.20 8.84 x 10-6 1.13 x 10-6 1.60 x 10-7 

n=25,p=0.25 8.68 x 10-6 1.26 x 10-6 1.78 x 10-7 

n=30,p=0.05 9.14 x 10-6 8.46 x 10-7 1.20 x 10-7 

n=30,p=0.10 8.77 x 10-6 1.15 x 10-6 1.63 x 10-7 

n=30,p=0.15 8.81 x 10-6 1.33 x 10-6 1.88 x 10-7 

n=30,p=0.20 8.74 x 10-6 1.15 x 10-6 1.63 x 10-7 

n=30,p=0.25 9.04 x 10-6 8.46 x 10-7 1.20 x 10-7 

n=35,p=0.05 8.91 x 10-6 8.65 x 10-7 1.22 x 10-7 

n=35,p=0.10 8.92 x 10-6 9.58 x 10-7 1.36 x 10-7 

n=35,p=0.15 8.74 x 10-6 1.21 x 10-6 1.71x 10-7 

n=35,p=0.20 8.95 x 10-6 1.08 x 10-6 1.52 x 10-7 

n=35,p=0.25 9.04 x 10-6 9.26 x 10-7 1.31x 10-7 

n=40,p=0.05 9.02 x 10-6 7.83 x 10-7 1.11 x 10-7 

n=40,p=0.10 8.68 x 10-6 1.13 x 10-6 1.60 x 10-7 

n=40,p=0.15 8.92 x 10-6 8.71 x 10-7 1.23 x 10-7 

n=40,p=0.20 8.72 x 10-6 1.32 x 10-6 1.87 x 10-7 

n=40,p=0.25 8.99 x 10-6 1.09 x 10-6 1.55 x 10-7 

 
Based on Table-2, the best performance of CS 

algorithm on Griewank function that have the lowest 
optimal value are on parameters n=25, p=0.25 and n=40, 
p=0.10 that have the same value 8.68 x10-6. The 
performance in terms of SD are 1.26 x 10-6   and 1.13 x 10-6   

respectively. While, SEM value are 1.78x10-7 and 1.60x 
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10-7. The second performance are on parameter 
n=40,p=0.20 with optimal value 8.72 x10-6, SD value of 
1.32 x 10-6and SEM, 1.87x10-7. The third optimal value 
that shows effective performance are 8.74 x10-6 with the 
parameter n=35,p=0.15, SD value of 1.21 x 10-6 and SEM, 
1.71 x 10-7. The highest optimal value where the value not 
close to zero are on parameter n=10,p=0.05 with 9.70 x10-

6, SD value of 3.06 x 10-7   and SEM,4.33 x 10-8. 
 

 
 

Figure-2. Performance of CS algorithm on 
Griewank function. 

 
According to Figure-2, the best performance of 

CS algorithm on Griewank function that have the lowest 
optimal value are on parameters n=25, p=0.25 and 
n=40,p=0.10 that have the same value 8.68 x10-6. The 
second performance are on parameter n=40, p=0.20 with 
optimal value 8.72 x10-6. The third optimal value that 
shows effective performance are 8.74 x10-6 with the 
parameter n=35, p=0.15. The highest optimal value where 
the value not close to zero are on parameter n=10,p=0.05 
with 9.70 x10-6. 
 
Rastrigin function 

Rastrigin function produces many local minima 
in its trajectory. Thus, the test function is multimodal. 
However, the location of the minima is regularly 
distributed. Table-3 indicates the result of CS algorithm on 
Rastrigin function. 

Based on Table-3, the best performance of CS 
algorithm on Rastrigin function  that have the lowest 
optimal value that nearest to zero are on  parameters 
n=25,p=0.10 with 8.51 x10-6 . The performance in terms of 

SD and SEM value are 1.44 x 10-6 and 2.04   x 10-7 

respectively. While, the second optimal value that shows 
effective performance are 8.54 x10-6 on parameter 
n=35,p=0.20, SD value of 1.22   x 10-6 and SEM, 1.73x10-

7. The third performance are on parameter n=20, p=0.25 
with optimal value 8.71 x10-6, SD value of 8.89   x 10-7  

and SEM, 1.26 x 10-7.The highest optimal value where the 
value not close to zero are on parameter n=10,p=0.05 with 
9.92 x10-6. The performance in terms of SD and SEM 
value 1.33 x 10-7 and 1.88 x 10-8 respectively. 
 

Table-3. Result of CS algorithm on Rastrigin function. 
 

 Mean SD SEM 

n=10,p=0.05 9.92  x 10-6 1.33 x 10-7 1.88 x 10-8 

n=10,p=0.10 9.87  x 10-6 2.05 x 10-7 2.90 x 10-8 

n=10,p=0.15 9.82  x 10-6 1.86 x 10-7 2.63 x 10-8 

n=10,p=0.20 9.74  x 10-6 3.50 x 10-7 4.94 x 10-8 

n=10,p=0.25 9.71  x 10-6 2.84 x 10-7 4.02 x 10-8 

n=15,p=0.05 9.60  x 10-6 4.16 x 10-7 5.88 x 10-8 

n=15,p=0.10 9.37  x 10-6 5.59 x 10-7 7.90 x 10-8 

n=15,p=0.15 9.11  x 10-6 9.50 x 10-7 1.34 x 10-7 

n=15,p=0.20 9.29  x 10-6 9.98 x 10-7 1.41 x 10-7 

n=15,p=0.25 9.28  x 10-6 7.34 x 10-7 1.04 x 10-7 

n=20,p=0.05 9.29  x 10-6 7.17 x 10-7 1.01 x 10-7 

n=20,p=0.10 8.92  x 10-6 1.17 x 10-6 1.65 x 10-7 

n=20,p=0.15 8.96  x 10-6 9.29 x 10-7 1.31 x 10-7 

n=20,p=0.20 9.08  x 10-6 7.84 x 10-7 1.11 x 10-7 

n=20,p=0.25 8.71  x 10-6 8.89 x 10-7 1.26 x 10-7 

n=25,p=0.05 8.98  x 10-6 1.02 x 10-6 1.45 x 10-7 

n=25,p=0.10 8.51 x 10-6 1.44 x 10-6 2.04 x 10-7 

n=25,p=0.15 9.05  x 10-6 7.49 x10-7 1.06 x 10-7 

n=25,p=0.20 8.94 x 10-6 9.27 x 10-7 1.31 x 10-7 

n=25,p=0.25 8.88 x 10-6 1.06 x 10-6 1.50 x 10-7 

n=30,p=0.05 8.79 x 10-6 1.06 x 10-6 1.49 x 10-7 

n=30,p=0.10 8.92 x 10-6 9.33 x 10-7 1.32 x 10-7 

n=30,p=0.15 8.79 x 10-6 1.16 x 10-6 1.65 x 10-7 

n=30,p=0.20 8.89 x 10-6 9.96 x 10-7 1.41 x 10-7 

n=30,p=0.25 8.72 x 10-6 1.20 x 10-6 1.70 x 10-7 

n=35,p=0.05 8.95 x 10-6 9.26 x 10-7 1.31 x 10-7 

n=35,p=0.10 8.94 x 10-6 9.72 x 10-7 1.37 x 10-7 

n=35,p=0.15 8.82 x 10-6 1.08 x 10-6 1.53 x 10-7 

n=35,p=0.20 8.54 x 10-6 1.22 x 10-6 1.73 x 10-7 

n=35,p=0.25 8.91 x 10-6 9.51 x 10-7 1.34 x 10-7 

n=40,p=0.05 8.80 x 10-6 1.11 x 10-6 1.57 x 10-7 

n=40,p=0.10 8.86 x 10-6 8.88 x 10-7 1.26 x 10-7 

n=40,p=0.15 8.84 x 10-6 1.23 x 10-6 1.74 x 10-7 

n=40,p=0.20 8.82 x 10-6 1.22 x 10-6 1.72 x 10-7 

n=40,p=0.25 8.83 x 10-6 1.06 x 10-6 1.50 x 10-7 
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Based on Figure-3, the best performance of CS 
algorithm on Rastrigin function  that have the lowest 
optimal value that nearest to zero are on  parameters 
n=25,p=0.10 with 8.51 x10-6. The second optimal value 
that shows effective performance are 8.54 x10-6 on 
parameter n=35, p=0.20. The third performance are on 
parameter n=20, p=0.25 with optimal value 8.71 x10-6.The 
highest optimal value where the value not close to zero are 
on parameter n=10, p=0.05 with 9.92 x10-6. 
 

 
 

Figure-3. Performance of CS algorithm on 
Rastrigin function. 

 
Rosenbrock function 

The Rosenbrock function, also referred to as the 
Valley or Banana function is a popular test problem for 
gradient-based optimization algorithms. The function is 
unimodal, and the global minimum lies in a narrow, 
parabolic valley. Table-4 indicates the result of CS 
algorithm on Rosenbrock function. 

Based on Table-4, the best performance of CS 
algorithm on Rosenbrock function  that have the lowest 
optimal value that nearest to zero are on  parameters n=25, 
p=0.20 with 8.44 x10-6. The performance in terms of SD 
and SEM value are 1.52 x 10-6 and 2.15 x 10-7   

respectively. The second optimal value that shows 
effective performance are 8.46x10-6 on parameter n=40, 
p=0.15. The performance in terms of SD and SEM value 
are 1.34 x 10-6 and 1.90 x 10-7. The third performance are 
on parameter n=35, p=0.20 with optimal value 8.64 x10-6, 
SD value of 1.16 x 10-6 and SEM, 1.63 x 10-7. The highest 
optimal value where the value not close to zero are on 

parameter n=10, p=0.05 with 9.93 x 10-6. The performance 
in terms of SD and SEM value 1.11 x 10-7   and 1.58 x 10-8   

respectively. 
 
Table-4. Result of CS algorithm on Rosenbrock function. 

 

 Mean SD SEM 

n=10,p=0.05 9.93 x 10-6 1.11 x 10-7 1.58 x 10-8 

n=10,p=0.10 9.89 x 10-6 1.33 x 10-7 1.88 x 10-8 

n=10,p=0.15 9.76 x 10-6 3.48 x 10-7 4.92 x 10-8 

n=10,p=0.20 9.69 x 10-6 4.01 x 10-7 5.67 x 10-8 

n=10,p=0.25 9.75 x 10-6 2.79 x 10-7 3.95 x 10-8 

n=15,p=0.05 9.64 x 10-6 4.11 x 10-7 5.81 x 10-8 

n=15,p=0.10 9.58 x 10-6 5.20 x 10-7 7.35 x 10-8 

n=15,p=0.15 9.38 x 10-6 6.12 x 10-7 8.66 x 10-8 

n=15,p=0.20 9.34 x 10-6 6.84 x 10-7 6.84 x 10-7 

n=15,p=0.25 9.05 x 10-6 9.91 x 10-7 1.40 x 10-7 

n=20,p=0.05 9.39 x 10-6 5.86 x 10-7 8.28 x 10-8 

n=20,p=0.10 8.90 x 10-6 9.18 x 10-7 1.30 x 10-7 

n=20,p=0.15 9.20 x 10-6 7.16 x 10-7 1.01 x 10-7 

n=20,p=0.20 9.05 x 10-6 7.40 x 10-7 1.05 x 10-7 

n=20,p=0.25 9.08 x 10-6 9.45 x 10-7 1.34 x 10-7 

n=25,p=0.05 8.98 x 10-6 1.00 x 10-6 1.42 x 10-7 

n=25,p=0.10 8.97 x 10-6 9.13 x 10-7 1.29 x 10-7 

n=25,p=0.15 8.80 x 10-6 1.09 x 10-6 1.54 x 10-7 

n=25,p=0.20 8.44 x 10-6 1.52 x 10-6 2.15 x 10-7 

n=25,p=0.25 8.89 x 10-6 1.23 x 10-6 1.74 x 10-7 

n=30,p=0.05 8.84 x 10-6 1.24 x 10-6 1.75 x 10-7 

n=30,p=0.10 8.81 x 10-6 1.13 x 10-6 1.60 x 10-7 

n=30,p=0.15 9.00 x 10-6 8.92 x 10-7 1.26 x 10-7 

n=30,p=0.20 8.65 x 10-6 1.07 x 10-6 1.51 x 10-7 

n=30,p=0.25 8.95 x 10-6 1.09 x 10-6 1.55 x 10-7 

n=35,p=0.05 8.72 x 10-6 1.13 x 10-6 1.60 x 10-7 

n=35,p=0.10 8.67 x 10-6 1.11 x 10-6 1.57 x 10-7 

n=35,p=0.15 8.95 x 10-6 9.22 x 10-7 1.30 x 10-7 

n=35,p=0.20 8.64 x 10-6 1.16 x 10-6 1.63 x 10-7 

n=35,p=0.25 8.81 x 10-6 1.31 x 10-6 1.85 x 10-7 

n=40,p=0.05 8.91 x 10-6 8.95 x 10-7 1.27 x 10-7 

n=40,p=0.10 8.77 x 10-6 1.12 x 10-6 1.58 x 10-7 

n=40,p=0.15 8.46 x 10-6 1.34 x 10-6 1.90 x 10-7 

n=40,p=0.20 8.95 x 10-6 1.08 x 10-6 1.52 x 10-7 

n=40,p=0.25 8.80 x 10-6 1.11 x 10-6 1.57 x 10-7 

 
Based on Figure-4, the best performance of CS 

algorithm on Rosenbrock function  that have the lowest 
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optimal value that nearest to zero are on  parameters n=25, 
p=0.20 with 8.44 x10-6. The second optimal value that 
shows effective performance are 8.46x10-6 on parameter 
n=40, p=0.15. The third performance are on parameter 
n=35, p=0.20 with optimal value 8.64 x10-6.The highest 
optimal value where the value not close to zero are on 
parameter n=10, p=0.05 with 9.93 x 10-6. 
 

 
 

Figure-4. Performance of CS algorithm on 
Rosenbrock function. 

 
Schwefel function 

The Schwefel function is complex, with many 
local minima. The function is multimodal. Table-5 
indicates the result of CS algorithm on Schwefel function. 

Based on Table-5, the best performance of CS 
algorithm on Schwefel function  that have the lowest 
optimal value that nearest to zero are on  parameters n=35, 
p=0.10 with 8.38 x10-6. The performance in terms of SD 
and SEM value are 1.30 x10-6 and 1.83x10-7 respectively. 
The second performance that have the lowest optimal 
value are on parameters n=30, p=0.25 and n=35, p=0.15 
that have the same value 8.50 x 10-6. The performances in 
terms of SD are 1.46 x 10-6 and 1.47 x 10-6 respectively. 
While, it have same value of SEM 2.07 x 10-7. The third 
performance are on parameter n=35, p=0.25 with optimal 
value 8.55 x10-6, SD value of 1.32 x 10-6  and SEM, 1.86 x 
10-7. The highest optimal value where the value not close 
to zero are on parameter n=10, p=0.05 with 9.89 x10-6. 
The performance in terms of SD and SEM value 1.23 x 10-

7 and 1.74 x 10-8 respectively.  

Table-5. Result of CS algorithm on Schwefel function. 
 

 Mean SD SEM 

n=10,p=0.05 9.89 x 10-6 1.23 x 10-7 1.74 x 10-8 

n=10,p=0.10 9.85 x 10-6 1.53 x 10-7 2.16 x 10-8 

n=10,p=0.15 9.82 x 10-6 1.67 x 10-7 2.37 x 10-8 

n=10,p=0.20 9.77 x 10-6 2.36 x 10-7 3.34 x 10-8 

n=10,p=0.25 9.69 x 10-6 3.66 x 10-7 5.17 x 10-8 

n=15,p=0.05 9.63 x 10-6 3.86 x 10-7 5.45 x 10-8 

n=15,p=0.10 9.50 x 10-6 5.59 x 10-7 7.91 x 10-8 

n=15,p=0.15 9.19 x 10-6 8.26 x 10-7 1.17 x 10-7 

n=15,p=0.20 9.30 x 10-6 8.41 x 10-7 1.19 x 10-7 

n=15,p=0.25 9.18 x 10-6 6.91 x 10-7 9.78 x 10-8 

n=20,p=0.05 9.44 x 10-6 5.55 x 10-7 7.84 x 10-8 

n=20,p=0.10 9.01 x 10-6 1.02 x 10-6 1.44 x 10-7 

n=20,p=0.15 8.93 x 10-6 8.25 x 10-7 1.17 x 10-7 

n=20,p=0.20 9.05 x 10-6 8.40 x 10-7 1.19 x 10-7 

n=20,p=0.25 8.84 x 10-6 1.03 x 10-6 1.46 x 10-7 

n=25,p=0.05 9.19 x 10-6 7.31 x 10-7 1.03 x 10-7 

n=25,p=0.10 8.91 x 10-6 1.04 x 10-6 1.47 x 10-7 

n=25,p=0.15 8.83 x 10-6 1.02 x 10-6 1.45 x 10-7 

n=25,p=0.20 9.12 x 10-6 7.11 x 10-7 1.00 x 10-7 

n=25,p=0.25 8.97 x 10-6 8.92 x 10-7 1.26 x 10-7 

n=30,p=0.05 9.02 x 10-6 1.00 x 10-6 1.42 x 10-7 

n=30,p=0.10 8.90 x 10-6 9.76 x 10-7 1.38 x 10-7 

n=30,p=0.15 8.89 x 10-6 1.05 x 10-6 1.49 x 10-7 

n=30,p=0.20 8.95 x 10-6 8.69 x 10-7 1.23 x 10-7 

n=30,p=0.25 8.50 x 10-6 1.46 x 10-6 2.07 x 10-7 

n=35,p=0.05 8.82 x 10-6 1.00 x 10-6 1.42 x 10-7 

n=35,p=0.10 8.38 x 10-6 1.30 x 10-6 1.83 x 10-7 

n=35,p=0.15 8.50 x 10-6 1.47 x 10-6 2.07 x 10-7 

n=35,p=0.20 8.83 x 10-6 9.25 x 10-7 1.31 x 10-7 

n=35,p=0.25 8.55 x 10-6 1.32 x 10-6 1.86 x 10-7 

n=40,p=0.05 8.60 x 10-6 1.15 x 10-6 1.62 x 10-7 

n=40,p=0.10 8.79 x 10-6 1.08 x 10-6 1.53 x 10-7 

n=40,p=0.15 8.66 x 10-6 1.21 x 10-6 1.71 x 10-7 

n=40,p=0.20 9.01 x 10-6 1.08 x 10-6 1.53 x 10-7 

n=40,p=0.25 9.01 x 10-6 1.08 x 10-6 1.53 x 10-7 

 
Based on Table-5, the best performance of CS 

algorithm on Schwefel function  that have the lowest 
optimal value that nearest to zero are on  parameters 
n=35,p=0.10 with 8.38 x10-6. The second performance that 
have the lowest optimal value are on parameters n=30, 
p=0.25 and n=35, p=0.15 that have the same value 8.50 
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x10-6. The third performance are on parameter n=35, 
p=0.25 with optimal value 8.55 x10-6.The highest optimal 
value where the value was close to zero are on parameter 
n=10, p=0.05 with 9.89 x10-6. 
 
 
 

RESULTS COMPARISON 
The best optimal values of Cuckoo search 

algorithm with Levy flight are compared with four 
algorithms. Every algorithm has different characteristics 
that give different result on benchmark function. Table-6 
indicates the average optimization of four benchmark 
testing functions. 

 
Table-6. Average optimization results for benchmark testing functions. 

 

Function(s)  PSO WSA ABC CS 

Ackley 

Mean 0.16 5.13 0.21 9.16  x 10-6 

SD 0.49 0.74 0.27 8.17  x 10-7 

SEM 0.09 0.13 0.05 1.16  x 10-7 

Griewank 

Mean 0.02 0.12 0.33 8.68  x 10-6 

SD 0.02 0.01 0.23 1.13  x 10-6 

SEM 0.004 0 0.04 1.60  x 10-7 

Rastrigin 

Mean 43.97 114.6 0.1 8.51  x 10-6 

SD 11.73 15.27 0.30 1.44  x 10-6 

SEM 2.14 2.79 0.05 2.04  x 10-7 

Rosenbrock 

Mean 15.08 5.04 9.32 8.44  x 10-6 

SD 24.17 1.72 10.9 1.52  x 10-6 

SEM 4.41 0.31 1.99 2.15  x 10-7 

Schwefel 

Mean 0.03 0.01 0 8.38  x 10-6 

SD 0.06 0 0 1.30  x 10-6 

SEM 0.01 0 0 1.83  x 10-7 

 
Table-6 shows CS algorithm perform better on 

five benchmark functions, Ackley (9.16  x 10-6), Griewank 
(8.68 x 10-6), Rastrigin (8.51 x 10-6), Rosenbrock (8.44 x 
10-6) and Schwefel (8.38 x 10-6)  that have the optimal 
value (average) that nearest to zero than other algorithms. 
The second best performance was given by ABC which 
performed well during convergence on four benchmark 
functions, Ackley (0.21), Griewank (0.33), Rastrigin (0.1) 
and Schwefel (0). While, PSO shows better performance 
on Ackley (0.16), Griewank (0.02) and Rastrigin (43.97). 
Lastly, WSA effectively performs on the optimal value 
that is almost zero on two benchmark functions, Griewank 
(0.12) and Schwefel (0.01). Overall, it can be seen that 
during simulationsall the algorithms used in this 
researchperformed very well onSchwefel function. 
 
CONCLUSIONS 

This paper proposed the use of population 
estimation in a new meta-heuristic called Cuckoo search 
(CS) algorithm to minimize the training error, achieve fast 
convergence rate and to avoid local minimum problem. 
The CS algorithm has been applied independently to solve 
several engineering design optimization problems based 
on cuckoo bird’s behavior. The algorithm are tested on 
five benchmark functions such as Ackley function, 
Griewank function, Rastrigin function, Rosenbrock 

function and Schwefel function. The performance of the 
proposed algorithm was compare with Particle Swarm 
Optimization (PSO), Wolf Search Algorithm (WSA) and 
Artificial Bee Colony (ABC). The performance evaluation 
has been carried out based on their average convergences 
that have the optimal value near to zero. The simulation 
results show that the proposed algorithm, CS with Levy 
flight performed very well and more efficient in finding 
the global optima. Furthermore, the results clearly showed 
that the proposed algorithm has significantly improved the 
convergence rate and avoid local minimum problem of 
benchmark function compared with PSO, WSA, and ABC. 
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