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ABSTRACT 

Gas turbines have become the dominant technology for power generation. They can be quickly assembled and put 
to service. They are convenient for engine exchange during system overhaul. The emission of NOx, SOx, CO, and 
particulates are also significantly law as compared to coal fired power plants. However, their maintenance cost is relatively 
high. The perceived best approach to reduce the cost is by using a proactive maintenance strategy in which a real-time 
diagnostics system plays a key role. The purpose of this paper is to review application of Orthonormal Basis Filters (OBFs) 
to fault detection and diagnostic systems design. The types of OBFs studied include Laguerre filters, Meixner filters, 
Kaurtz filters, Generalized OBF, and Markov-OBF. The combination of OBFs and computational intelligence methods 
(artificial neural network, fuzzy systems, and evolutionary optimization) are also highlighted. The review shows that, even 
though OBFs have been around for more than a decade, their application is limited to model identification only. As such, 
the only diagnostic problem revealed so far is that concentrating on stirred tank reactor. Therefore, to extend the use of 
OBFs to power plants, there needs to be further study in the context of power plants or specifically gas turbines.  
 
Keywords: gas turbine, orthonormal basis filters, fault detecion, fault diagnostics. 
 
INTRODUCTION 

Gas turbines are widely used in oil and gas 
transmission either as direct drives for compressors or as 
prime movers for electric power generation. Single shaft, 
aero-derivative design of a gas turbine is shown in Figure 
1. The thermodynamics in the axial compressor raises the 
pressure and temperature of the air.  The compressed air 
and fuel mixture then undergo through an exothermic 
reaction in the combustion chamber leading to high 
temperature and pressure of the gas mixture.  The hot gas 
then expands through the turbine resulting in rotational 
power on the turbine shaft. In an industrial gas turbine, the 
main shaft is connected to a generator shaft through a 
speed reduction gear box.  

 

 
 

Figure-1. Single shaft gas turbine generator[1]. 
 

Gas turbines are equipped with variable geometry 
compressors, which allow a wider surge and stall margins 
during part load operations. In the starting mode and for 
speeds lower than about 65% of the design speed, the Inlet 
Guide Vanes (IGVs) and Variable Stator Vanes (VSVs) 
are at minimum opening position; at a speed of about 98%, 
they open fully with the opening starting at around 65% of 

design speed [1]. The latter region is identified as a 
variable geometry region where the IGVs and VSVs are 
manipulated to vary the air flow rate.  

Meanwhile, the gas turbines used in cogeneration 
plants are expected to provide high temperature gas to the 
exhaust gas heat recovery steam generator. For loads 
higher than 50% of the rated value IGVs and VSVs are 
manipulated to vary the air flow rate in response to the 
load demand. The fuel flow rate, fm , is also varied to 

keep the turbine inlet temperature at the required set point. 
For a load lower than 50%, the gas turbine is on speed and 
load control. During this period the IGVs are fully open 
allowing maximum flow of air.  

Real-time fault detection and diagnostics demand 
high fidelity models covering the controller and auxiliary 
systems. However, the way it is expected to operate, and 
unavailability of component performance maps and design 
information on the controller configuration makes it 
difficult to develop such a model. The fact of the matter is 
that it is not practical to provide performance maps for a 
variable geometry compressor, if the map is required for 
the whole operating region. Nevertheless, in the absence 
of performance maps and in  a narrow operating zone, the 
compressor and turbine efficiencies might be assumed 
constant [2, 3], or  empirical models might be tested [4, 5]. 
For instance, in Kakimoto and Baba [6], the pressure ratio 
in the compressor and turbine are described as a function 
of design pressure ratio and air flow rate while the 
efficiencies are assumed constant. In the work of Suzaki et 
al. [7], pressure ratio is defined as a function of rotational 
speed. Other alternative are to use either scaling method 
[8] or stage-stacking approach [9]. Regardless, the 
dynamic model development is hindered by missing 
inertial information, controller gains and time constants. 
Geometric parameters for the bleed valve, IGVs, and 
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VSVs are rarely known. In such kind of situations, the 
authors believe that the designer has to resort to model 
identification methods which can be quickly applied if the 
historical data with good resolution is readily available.  

The purpose of this paper is to review the 
application of Orthonormal Basis Filters (OBFs) in the 
design of fault detection and diagnostics system for gas 
turbines. The OBFs visited entail: Laguerre type, Meixner 
type, Kaurtz type, generalized form, and Markov design. 

 
THE CONCEPT OF FAULT DIAGNOSTICS 

A fault is said to be detected if the residual 
calculated between the actual output )( pyi  and the 

predicted )( pyi


result is greater than the corresponding 

confidence interval for normal operating conditions. A 
general structure for FDD is shown in Figure-2. 
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Figure-2. General structure of a fault diagnostics 
framework [1, 10]. 

 
ORTHONORMAL BASIS FILTERS 
 Two of the OBFs mostly used for model 
identification and control system design are Laguerre 
function and Kaurtz Function [11]. Two functions are said 
to be orthonormal if they are orthogonal to each other and 
if each function demonstrates Euclidian norm of unity; 

that is 1)()( 11   qq ki  . In the frequency domain, 

the orthogonality condition between two functions 
)(  ji and )(  jk are satisfied if and only if 
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Where, .,. is inner product between functions )(  ji and 

)(  jk , and 1q is the shift operator.  

 
Laguerre basis functions (LBF)[12]: is featured by a 
single pole  , with the condition that 1 .  LBF based 

model is appropriate for a system with a dominant first 
order model. The governing equation for i-th LBF filter is  
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Meixner basis functions (MBF) [13]: These functions in 
z-transform are obtained from transformation of the 
discrete LBF by appropriate matrix. Similar to LBF, a 
single pole with the criteria of 1  is used to generate 

the basis. However, the additional term ""  that stands 

for order of generalization makes it suitable to 
accommodate delays in the system. It is shown in [14] that 
LBF and pulse functions are special cases of MBF; for 

0 , MBF reduces to LBF. With respect to LBF, MBF 

is less applied in model identification and control. 
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Kurtz basis function (KBF)[15]: KBF is the third type of 
OBF applied for model identification. Unlike the LBF, it 
involves two conjugate poles. For a system having 
dominant second order dynamics, models based on these 
functions have been found suitable. Laguerre and Kautz 
functions are special cases of generalized orthonormal 
basis functions.  
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Where, 11  a and 11  b  
 

Generalized orthonormal basis functions (GOBF): In 
this case a mix of different poles is used to define the 
bases. In 1995, Heuberger et al. [16] demonstrated the 
possibility of generating OBFs with repeated and fixed 
poles by assuming a minimum balanced State Space (SS) 
realization of inner functions with McMillan degrees 

0bn . In 1997, Ninnes and Gustafson [17] came up with 

a unified approach by showing that the equation (6) makes 
up a complete orthogonal set with  ,....2,1,  jj  

signifying arbitrary poles inside the unit circle and in 
conjugate pairs. Latter in 2008, Toth [18] revealed that 
GOBF in fact resides to a bigger set of OBFs referred as 
Takanaki-Malmquist Functions (TMF).  GOBFs have been 
chosen over the others for a system having scattered poles. 
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Markov-OBF: As partially stated, one limitation of LBF, 
KBF and GOBF is that the time delay is not considered. 
After the contribution by Finn et al. [19], however, the 
time delay is  included by putting some of the poles at the 
origin. The resulting orthogonal set is named Markov-
OBF by Patwardhan and Shah [20], equation (7). Note that 
the three OBFs, including the pulse transfer functions, can 
be constructed from Markov-OBF. One drawback of using 
OBF is the pre-requirement on the dominant pole or poles 
of the system and time delay in case of using Markov-
OBF.  
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Construction of models using OBFs: The linear and 
nonlinear forms of OBF based modes takes the forms 
stated as equation (9) and equation (10), respectively. 
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Where,  Tn puqgpuqgq )(),()(),(),( 0 ξξξg  ; 

 Tn 21ξ is vector of OBF poles. For LTI 

models, the model parameters can be estimated applying 
the method of Least Squares (LS).  

In terms of extent of studies, the most researched 
dynamic nonlinear model in the frame work of OBFs is 
the Volterra Systems [21-23]. In Volterra models, 
polynomial expansion of the input-output data is the 
foundation leading to the formulation of suitable models. 
A Volterra model has the advantage that it has a nonlinear 
structure, it is linear in parameters, and the model behaves 
stable for open-loop stable systems. However, Volterra 
models require more model parameters in order to achieve 
higher accuracy. In fact it is not common to see Volterra 
models with model orders higher than two because of the 
high computational burden. In the following, we would 
like to look at other alternative nonlinear models. 

 
OBF- Artificial neural network: Even though Volterra 
models are well studied, recently the use of Artificial 
Neural Networks (ANN) and Fuzzy Systems (FS) in the 
frame work of OBF is introduced. In the research reported 
by Parker and Tumma [24], Wray and Green [25], 
Marmarelis and Zhao [26], Liu et al. [27], Alataris et al. 
[28],  we find detail studies about the conditions under 
which Volterra models could be developed from neural 
network approach. It was shown by Back and Tsoi [29] 
that ANN incorporating Laguerre filters can approximate a 
Volterra model to a certain degree of accuracy. In the 
same year, 1996, Sentoni et al. [30] also explored the 
possibility of developing a nonlinear model from the use 
of ANN with single hidden layer and Laguerre filters. 

After a test on control of a binary distillation column, they 
have concluded that the model using the stated approach is 
indeed effective. Besides, they mentioned that time delay 
in the system can be considered by making adjustments on 
the input to the Laguerre filters. Convergence and 
generalization characteristics of OBF-ANN based models 
are studied by Balestrino et al. [31] and Abrahantes 
Vazquez et al. [32], respectively. In the work of Diwanji et 
al. [33], we see the application of Laguerre functions and 
ANN based nonlinear models to the design of a model 
predictive controller for a single spool gas turbine. The 
model is a result of direct adaptation of Weiner model 
structure [34]. The whole idea was to perform feasibility 
study and at the end they came to notice that the proposed 
approach is indeed better than NARMAX model, which is 
traditionally known problematic in terms of fixing the 
model structure and model orders. It is worth noting that, 
this is the only work we came across in the area of power 
plants. 
 
OBF- fuzzy systems: Sbarbaro and Johansen [35] are, to 
our knowledge, the first to demonstrate a nonlinear model 
that incorporates Laguerre filters and at the same time 
possess the characteristics of fuzzy modeling. They used 
operating region dependent local approximations linked by 
weighting parameters that are reflections of fuzzy sets. In 
the same year, Nelles [36] proposed a similar model but 
the model was trained by LOLIMOT algorithm. Then 
latter in 1999, Oliveira et al.[37] reported a fuzzy 
relational model in the framework of OBFs. There are 
drawbacks regarding the models. Firstly, they assumed 
equally spaced cluster centres. Secondly, spread terms are 
set equal to half of the distance between two adjacent 
centres. Thirdly, they used a fixed pole of 7.0 . None of 

these are realistic. In 2002, Campello and Amaral [38] 
published more general realization of the Oliveira’s 
approach in which a state-space local model is assumed in 
the rules of the OBF-Fuzzy model. In their study, they 
used the model to design a controller for a polymerization 
reactor. In the following year, they also extended the 
approach to hierarchical fuzzy models [39]. While testing 
the possibility of training the models by LS and GA 
algorithms, they also studied the performance of the 
resulting models as part of a Model Predictive Control 
(MPC) system for an ethanol production plant [40].   
 
Estimation for dominant pole: The other key step in the 
development of equation (8) is the selection of optimum 
number of poles and the corresponding values. It is proven 
that for a system having normalized poles 

 0
00 ,...,2,11: njforpp jj  , the optimum selection for 

GOBF poles is governed by convergence rate,  
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Estimation for model uncertainty: 
The fault detector governed by the equation (1) 

requires an adaptive confidence interval which can be 
derived assuming linearization about the operating point. 
Assuming Taylor’s first order approximation, the OBF 
model, can be stated as 
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MODEL PERFORMANCE EVALUATION 
CRITERIA: 

Suitability of the model can be assessed by using 
Akak’s Information Criterion (AIC).  
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Where, nknun  )1(  is the number of 

estimated model parameters; )(ˆ iy is the predicted output 

and )(ˆ)()ˆ,( )()()( pypyp iii
i θ . In addition to Equation 

(5), we have also adopted Variance Accounted For (VAF) 
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CONCLUSIONS 
 Developing a reliable and high fidelity model for 
a gas turbine is complicated by missing design point 
information and controller parameters. In  a situation like 
that, it is generally advised to resort to time series models 
like AR groups (ARX, ARMAX, NARMAX, ARIMA, 

and Box Jenkins), Voltera series, ANN model or fuzzy 
approach. The present paper provided a brief review on 
the construction of such models in the context of OBFs 
(Laguerre, Meixner, Kaurtz, Generalized form, and 
Markov filters). Differences and similarities among OBFs 
have been highlighted. The main intention was to reveal 
that OBFs have been adopted in nonlinear model 
identifications and that they can be applied to power plant 
fault detection and diagnostics. Based on the presented 
summary, it can be concluded that  
 OBFs are proven ideal to reduce the model order, and 

hence resulting in a parsimonious model. The first 
challenge, however, is that they require a decision on 
the optimum number of poles and model order.  

 Even though good progress have been made in the 
construction of time series models with OBFs, the use 
of such kind of models of gas turbines seems lacking. 
The only reported paper is that limited to, model 
predictive control only. 

 The confidence interval defined for time series 
models never included the effect of OBF poles. 

 Among the five OBFs, LBF is the most widely used, 
with KBF comes second. Perhaps this is due to the 
single pole requirement in LBF application. 

Future work will concentrate on the construction of fault 
detection and diagnostics system by using adaptive 
confidence intervals and OBFs. 
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