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ABSTRACT 

Identification of the regions that code for proteins in a deoxyribonucleic acid (DNA) sequence is a vital and 

challenging task in the area of Bioinformatics. Study of exon regions is a substantial phenomenon in designing drugs and 

identification of diseases. The fragments of DNA that contain protein coding information are termed as exons. Hence 

finding the exon locations in a DNA sequence is a crucial job in genomics. Nucleotides aid as the fundamental structural 

unit of a DNA. Three base periodicity (TBP) has been observed in the regions of DNA sequences which code for proteins 

in case of nucleotides. By applying signal processing methods, TBP can be easily determined. Adaptive signal processing 

methods found to be probable in comparison with several other methods. This is due to the distinctive ability of adaptive 

algorithms to change weight coefficients depending on genomic sequence. We propose a novel adaptive exon predictor 

(AEP) based on these deliberations using normalization to improve pursuing ability of the adaptive algorithms. We 

developed AEPs using LMS algorithm with its data clipped; error clipped and signed normalized variants to reduce 

computational complexity. Hybrid variants of proposed AEPs include DCLMS, ECLMS, ECLMS, DNLMS, DNDCLMS, 

DNECLMS, and DNDECLMS algorithms. It was shown that DNDCLMS based AEP is better in exon prediction 

applications based on performance measures with Sensitivity 0.6872, Specificity 0.7043 and precision 0.6722 at a 

threshold of 0.8. Finally the capability of several AEPs in predicting exon locations is verified using different genomic 

sequences found from National Center for Biotechnology Information (NCBI) database. 

 
Keywords: adaptive exon predictor, bioinformatics, computational complexity, deoxyribonucleic acid, three base periodicity.  

 

1. INTRODUCTION 

A major objective of research in genomics is to 

know the nature of information along with its role in 

determining a particular function encoded by the gene. A 

vital step to achieve this goal is identification of protein 

coding segments in a DNA sequence [1]. Finding the exon 

regions is a extensive area of research in the field of 

genomics. Necessary genes form a subset in organisms 

which are required for the development, survival or 

fertility [2] - [3]. Therefore, finding the exons is not only 

interesting, but also has real importance to find human 

diseases [4] and discover targets of drugs in new 

pathogens [5] - [6]. The genic and intergenic segments are 

present in a DNA sequence. The Subarea of genomics that 

deals with spotting the protein coding segments in a DNA 

sequence is known as gene identification. The learning of 

primary protein region structure helps in analyzing the 

secondary and tertiary structure of exon regions. Once the 

whole structure of protein coding regions is analyzed, we 

can detect all abnormalities, design drugs and cure 

diseases. These studies help in knowing the assessment of 

phylogenic trees [7] - [8]. These days, a fast growth of raw 

data of genomic sequences needs effective biological 

elucidations, but more cost is involved to conduct 

biological experiments for predicting gene locations and 

there is still a practical demand for fast and efficient tools 

mainly to find genes, to analyze sequences and determine 

their functions [9] - [10]. Based on the elementary 

molecular cell structure, all living organisms are divided 

into two categorizations termed as eukaryotes and 

prokaryotes. The protein coding regions responsible for 

synthesis of proteins are continuous and long in 

prokaryotes; bacteria and archaea are the examples of 

prokaryotes. The genes are a combination of coding 

segments separated by long non-coding segments in 

eukaryotes [11]. These segments which are responsible for 

protein coding are termed as exons, whereas the non-

protein coding fragments are termed as introns. Other than 

archaea and bacteria, all the living organisms come under 

this category. The coding regions present in human 

eukaryotes are only 3% of the sequence and the residual 

97% are non-coding regions. Hence the identification of 

protein coding regions is a vital task [12] - [13]. Almost in 

all DNA sequences, a three base periodicity (TBP) is 

exhibited by the protein coding regions. This is apparent 

by a sharp peak at a frequency f=1/3 in the power spectral 

density (PSD) plot [14].  Several exon prediction 

techniques are presented in literature based on several 

signal processing techniques [15] - [18]. But, the length of 

the sequence in real-time gene sequence is extremely long 

and also the location of the exons varies from sequence to 

sequence. To process such gene sequences, adaptive 

algorithms are found to be promising techniques. 3-base 

periodicity property is useful to find the protein coding 

segments in a DNA sequence [19]. Adaptive algorithms 

are able to process very long sequences in multiple 

iterations and can change weight coefficients in 

accordance to the statistical behavior of the input 

sequence. In this paper, we propose to develop an 

Adaptive Exon Predictor (AEP) using adaptive algorithms. 

Least mean squares (LMS) algorithm is a fundamental 

adaptive technique. This algorithm is prevalent because of 

its simplicity in implementation. But this algorithm 

undergoes problems like amplification of gradient noise, 
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weight drift and poor convergence. Hence, to increase the 

performance of AEP, we put forward to use data clipped, 

error clipped, data error clipped and normalized adaptive 

algorithms. The three resultant algorithms are Data 

Clipped LMS (DCLMS), Error Clipped LMS (ECLMS), 

and Data Error Clipped LMS (DECLMS) algorithms. Data 

Normalized version of LMS is called as Normalized LMS 

(DNLMS) algorithm. DNLMS algorithm overcomes the 

hitches of LMS and improves tracking ability and 

convergence speed. This also leads to reduced excess 

mean square error (EMSE) in the process of exon 

prediction. In real time applications, the computational 

complexity of an adaptive algorithm plays a crucial role.  

Particularly when the sequence length is very 

large, if the computational complexity of the signal 

processing technique is large the samples overlap on each 

other at the input of the exon predictor. These causes inter 

symbol interference (ISI) and leads to inaccuracy in the 

prediction.  Also, when the AEP is implemented on VLSI 

circuit or nano device the large computational complexity 

tends to bigger circuit size and large operations. Hence, to 

cope up the computational complexity of an AEP in real 

time applications we combine the adaptive algorithms with 

sign based algorithms. Sign based algorithms apply 

Signum function and minimizes the number of 

multiplication operations [20]. The three signum based 

simplified algorithms are sign regressor algorithm (SRA), 

sign algorithm (SA) and sign sign algorithm (SSA). 

Therefore, in order to minimize the computational 

complexity we combine the three signum algorithms with 

the normalized LMS algorithm. In these algorithms due to 

normalization, the denominator of the weight update 

equation has to compute multiplications equal to the 

numeric value of tap length of the algorithm. When the tap 

length is larger, which is common in real time applications 

the large tap length causes an additional computational 

burden on the AEP. This can be minimized to one, 

irrespective of tap length by using an approach called 

maximum normalization [21].The resulting normalized 

versions are Data Normalized LMS (DNLMS), Data 

Normalized Data Clipped LMS (DNDCLMS), Data 

Normalized Error Clipped LMS (DNECLMS) and Data 

Normalized Data Error Clipped LMS (DNDECLMS) 

algorithms. In the normalization version of the LMS 

algorithm the correlation between the error and the 

reference input is normalized by a factor equal to the 

squared norm. In normalized algorithms, the gradient 

noise application problem is minimized and it converges 

faster than the conventional LMS algorithm. Hence the 

DNLMS algorithm has a convergence rate and a steady 

state error better than LMS algorithm. Based on these data 

clipped, error clipped and normalized adaptive algorithms, 

we develop various AEPs and the performance is tested 

using real genomic sequences obtained from the National 

Center for Biotechnology Information (NCBI) database 

[22]. We consider convergence characteristics, 

computational complexity (O), sensitivity (sn), specificity 

(sp) and precision (pr) as performance characteristics to 

evaluate the performance of the various AEPs. The theory 

of the adaptive algorithms, results of AEPs and discussion 

on the performance of various AEPs is presented in the 

following sections.   

 

2. ADAPTIVE ALGORITHMS FOR EXON  

PREDICTION 

In proposing AEP, the input genomic sequence is 

converted into binary representation. This is a vital task in 

genomic processing since signal processing techniques can 

be applied only on discrete or digital signals. At this point, 

we use the binary mapping to convert the input DNA 

sequence into binary data [18]. This mapping method is 

used to represent an input DNA sequence as four binary 

indicator sequences. Using this binary mapping, the 

nucleotide occurrence at a location is indicated by 1 and 

absence by 0. Now the resulting sequence is appropriate to 

give as an input to an adaptive algorithm. Four binary 

indicator sequences are used as input to the adaptive filter 

[19]. Now, we consider an adaptive exon predictor (AEP) 

to be applied for converting binary sequences. Let G(n) be 

the DNA sequence, B(n) be the binary mapped sequence, 

R(n) is the TBP obeyed genomic sequence, Y(n) is the 

output from the adaptive algorithm and F(n) is the 

feedback signal to update weight coefficients of the 

algorithm.  Consider an LMS adaptive algorithm of length 

‘T’. In this algorithm, the next weight coefficient can be 
predicted based on the current weight coefficient, step size 

parameter ‘S’, input sequence sample value G(n) at the 
instance and the feedback signal F(n) generated in the 

feedback loop. The mathematical expression and analysis 

of LMS algorithm is presented in [20]. A typical block 

diagram of proposed AEP is shown in Figure-1.  

 

 
 

Figure-1. Block diagram of an adaptive exon predictor. 
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Because of its simplicity and vigor, the 

conventional LMS algorithm may be used in exon 

prediction applications. For convergence and stability, the 

LMS filter needs a prior knowledge of the input power 

level to select the step size parameter. As the input power 

level is usually one of the statistical unknowns, it is 

normally estimated from the data before beginning the 

adaptation process. But LMS algorithm suffers with two 

drawbacks in practical situations. It is clear that the input 

data vector is directly proportional to the weight update 

mechanism, by observing the weight update recursion of 

LMS algorithm. Another problem is the fixed step size. In 

practice, an algorithm has to be designed such that, it has 

to handle both strong and weak signals. Hence, the tap 

coefficients should be adjusted accordingly depending 

upon the filter input and output fluctuations. Therefore, 

LMS algorithm suffers from a gradient noise amplification 

problem, when the input data vector is large. 

Normalization has to be applied to avoid this problem. 

With this, the adjusted filter weight vector coefficient is 

normalized with respect to squared Euclidian norm of the 

input vector at each iteration.  

The weight update relation of LMS adaptive 

algorithm is given by 

 �ሺ� + ͳሻ = �ሺ�ሻ + � �ሺ�ሻܦሺ�ሻ                                       ሺͳሻ 

 
Less computational complexity of the adaptive 

algorithm is highly desirable in exon prediction 

applications for developing nano devices. This reduction is 

generally obtainable by clipping either the input data or 

feedback signal or both. The algorithms based on clipping 

of error or data are presented in [21]. These are sign 

regressor algorithm (SRA), sign algorithm (SA) and sign 

sign algorithm (SSA). Among the adaptive algorithms, the 

SRA, SA and SSA have a convergence rate and a steady-

state error that is slightly inferior to those of the LMS 

algorithm for the same parameter setting. The signum 

function is written as follows.  

{ሺ�ሻ�}ܥ  = { ͳ: �ሺ�ሻ > ͲͲ: �ሺ�ሻ = Ͳ−ͳ: �ሺ�ሻ < Ͳ}                                                (2) 

 

To reduce the computational complexity 

compared with LMS adaptive algorithms, we use SRA, 

SA and SA adaptive algorithms.The computational 

complexity of these algorithms is much less compared to 

the LMS algorithm. The Data Clipped LMS (DCLMS) 

algorithm is obtained from the conventional LMS 

recursion by replacing the tap-input vector I(n) with the 

vector C[D(n)], where the sign function C  is applied to 

the vector D(n) on an element-by-element basis. This is 

also called as clipped LMS as we are clipping the input 

data.   

The weight update relation of CLMS algorithm is 

given by 

 �ሺ� + ͳሻ = �ሺ�ሻ + � �ሺ�ሻܥ[ܦሺ�ሻ]                                   ሺ͵ሻ 

The weight update relation of ECLMS algorithm 

is obtained by replacing I(n) with its signed form and is 

given by 

 uሺn + ͳሻ = uሺnሻ + S C[Iሺnሻ]Dሺnሻ                                     ሺͶሻ 

 

Similarly, the weight update relation of DECLMS 

algorithm is obtained by replacing I(n), D(n) with its 

signed forms and is given by 

 uሺn + ͳሻ = uሺnሻ + S C[Iሺnሻ]C[Dሺnሻ]                                ሺͷሻ 

 

 In overcoming the gradient noise amplification 

problem associated with the conventional LMS filter, the 

normalized LMS filter introduces a problem of its own, 

namely the tap input vector I(n) is small, numerical 

difficulties may arise because  then we have to divide by a 

small value for the squared norm. To overcome this 

problem, we modify the above recursion by adding a small 

positive constant  ε. The parameter ε is set to avoid 

denominator being too small and step size parameter is too 

big.  

  

Now the step size parameter is written as,  

 Sሺnሻ = Sε + ||Iሺnሻ||ʹ                                                        ሺ͸ሻ  
 

where Sሺnሻ is a normalized step size with 0 <�< 2. 

Replacing S in the LMS weight vector update equation 

with S(n) leads to the DNLMS, which is given as 

 uሺn + ͳሻ = uሺnሻ + S||Iሺnሻ||ʹ Iሺnሻ. Dሺnሻ                         ሺ͹ሻ    
 

To further reduce the computational complexity of the 

sign algorithms and for faster convergence, these three 

simplified sign algorithms are combined with DNLMS 

algorithms. The advantage of the DNLMS algorithm is 

that the step size can be chosen independent of the input 

signal power and the number of tap weights. Hence the 

DNLMS algorithm has a convergence rate and a steady 

state error better than LMS algorithm. On the other hand, 

some additional computations are required to compute 

D(n).Further, to reduce the computational complexity of 

the algorithms we apply data normalization to the LMS 

adaptive algorithm. In this approach the correlation 

between the error and the reference input is normalized by 

a factor equal to the squared norm. This reduces the 

number of multiplications from a value equal to tap length 

‘C’ of the algorithm to only one. In the DNLMS 
algorithm, step size can be chosen independent of the 

input signal power and the number of tap weights. This 

algorithm provides significant improvements in 

minimizing signal distortion. The advantage of the 

DNLMS algorithm gives the correlation between the error 

and the reference input is normalized by a factor equal to 

the squared norm. Hence the DNLMS algorithm has a 

convergence rate and a steady state error D(n) better than 
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LMS algorithm. Compared with LMS algorithm, the 

DNLMS algorithm requires a small number of 

computations. 

Thus, the weight update equation of the DNLMS 

algorithm becomes 

 uሺn + ͳሻ = uሺnሻ + Sε+‖Iሺnሻ‖2 Iሺnሻܦሺnሻ                            (8)  

 

Similarly, the weight update relations of 

DNDCLMS, DNECLMS and DNDECLMS becomes 

 uሺn + ͳሻ = uሺnሻ + Sε+‖Iሺnሻ‖2 Iሺnሻܥ[ܦሺnሻ]                          (9)  

 uሺn + ͳሻ = uሺnሻ + Sε+‖Iሺnሻ‖2C[ C[Iሺnሻ]ܦሺnሻ                  (10)  

 uሺn + ͳሻ = uሺnሻ + Sε+‖Iሺnሻ‖2 C[Iሺnሻ]ܥ[ܦሺnሻ]                  (11)  

 

In order to cope up with both the complexity and 

convergence issues without any restrictive tradeoff, we 

propose various data clipped, error clipped, and 

normalized adaptive variants of LMS in this paper. The 

corresponding adaptive algorithms using LMS and 

DNLMS are Data Clipped LMS (DCLMS), Error Clipped 

LMS (ECLMS), Data Error Clipped LMS (DECLMS), 

Data Normalized LMS (DNLMS), Data Normalized Data 

Clipped LMS (DNDCLMS), Data Normalized Error 

Clipped LMS (DNECLMS) and Data Normalized Data 

Error Clipped LMS (DNDECLMS) algorithms. The 

normalized algorithms enjoy less computational 

complexity because of the sign present in the algorithm 

and good filtering capability because of the normalized 

term. 

 

3. COMPUTATIONAL COMPLEXITY AND  

CONVERGENCE ISSUES 

In general, to estimate and compare algorithm 

complexity, number of multiplications required to 

complete the operation is taken as a measure. However, 

most of the DSP’s have a built in hardware support for 

multiplication and accumulation (MAC) operations. 

Usually they perform this operation in a single instruction 

cycle as well as addition or subtraction. In this thesis, we 

are not trying to provide a precise analysis of a 

computational complexity; rather we concentrate on 

presenting a comparison between different adaptive 

algorithms. The computational complexity figures 

required to compute various algorithms considered are 

summarized in Table-1. Further, as these sign based 

algorithms are largely free from multiplication operation, 

these algorithms provide an elegant means for adaptive 

exon prediction applications.  For example, LMS 

algorithm requires T+1 MACs to compute the weight 

update equation. In case of signed regressor algorithm 

only one multiplication and accumulate operation is 

required to compute ‘S.D(n)’. Whereas other two signed 

LMS algorithms does not require multiplication if we 

choose ‘S’ value a power of 2. In these cases 
multiplication becomes shift operation which is less 

complex in practical realizations. In SSA we apply signum 

to both data and vector, and then we add ‘S’ to weight 
vector with addition with sign check (ASC) operation. 

Among all the algorithms the DNLMS algorithm is more 

complex; as it requires 2T+1 MACs and 1 division 

operations implement the weight updating equation (8) on 

a DSP processor. In case of the DNDCLMS adaptive 

algorithm, computational complexity is less compared 

with other normalized algorithms with 1 MAC and 1 

Division operations. Note that ASC and shift operations 

require less logic circuitry when compared to MAC 

operations. However, by using a maximum normalization 

approach, we can minimize multiplications in the 

denominator from ‘T’ to ‘1’.  
Compared with other normalized algorithms, the 

DNDCLMS algorithm requires a small number of 

computations. To compute the variable step minimum 

computational complexity, the error value produced in the 

first iteration is squared and stored. The error value in the 

second iteration is squared and added to the previously 

stored value. Then, the result is stored in order to be used 

in the next iteration, and so on. 

 

Table-1. Computational complexities of various algorithms used for the development of AEPs. 
 

S. No. Algorithm MACs ASC Divisions Shifts 

1 LMS T+1 Nil Nil Nil 

2 DCLMS 1 Nil Nil Nil 

3 ECLMS T Nil Nil Nil 

4 DECLMS Nil T Nil Nil 

5 DNLMS 2T+1 Nil 1 Nil 

6 DNDCLMS 1 Nil 1 Nil 

7 DNECLMS T Nil 1 Nil 

8 DNDECLMS Nil T 1 T 
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In order to cope up with both the complexity and 

convergence issues without any restrictive tradeoff, the 

corresponding signum based normalized adaptive 

algorithms considered using LMS are Data Normalized 

LMS (DNLMS), Data Normalized Data Clipped LMS 

(DNDCLMS), Data Normalized Error Clipped LMS 

(DNECLMS) and Data Normalized Data Error Clipped 

LMS (DNDECLMS) algorithms. These algorithms 

provide less computational complexity because of the sign 

present in the algorithm and good filtering capability 

because of the normalized term. These normalized 

adaptive algorithms offers low computational complexity 

and good filtering capability compared to converntional 

LMS adaptive algorithm. The less computational 

complexity of these adaptive algorithms leads to 

simplified architecture for system on chip (SOC) or lab on 

chip (LOC).  

The convergence characteristics of the Data 

Clipped LMS (DCLMS), Data Error Clipped LMS 

(DECLMS) and its data normalized adaptive algorithms 

are shown in Figure-2. From these characteristics, it is 

clear that normalized adaptive algorithms have a faster 

convergence rate than LMS. Hence, among the algorithms 

considered for the implementation of AEPs, the 

DNDCLMS adaptive algorithm is found to be better with 

reference to computational complexity and convergence 

characteristics than other normalized algorithms.  

 

 
 

Figure-2. Convergence characteristics of data clipped, error clipped LMS and its normalized variants. 

 

4. RESULTS AND DISCUSSIONS  

In this section, performances of various AEPs are 

compared. The structure of AEP is shown in Figure-1. The 

maximum data normalized LMS algorithm and its sign 

based versions are used to develop various AEPs. For 

comparison purpose, we also develop an LMS based AEP.  

For evaluation purpose, we obtained ten DNA sequences 

from NCBI database [22]. For consistency of results, to 

evaluate the performance of various algorithms we 

considered ten DNA sequences as our data set. The 

description of the dataset considered is shown in Table-2. 

The performance measure is carried using parameters like 

sensitivity (Sn), specificity (Sp) and precision (Pr). The 

theory and expressions for these parameters are given in 

[18][23].  The exon prediction results for sequence 1 are 

shown in Figure-3. The performance measures Sn, Sp and 

Pr are measured at threshold values from 0.4 to 0.9 with an 

interval of 0.05. At threshold 0.8 the exon prediction is 

seems to be better. Hence at threshold 0.8 the values are 

shown in Table-3. 
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Table-2. Dataset of DNA sequences from NCBI database. 
 

Seq. no. Accession no. Sequence definition 

1 E15270.1 Human gene for osteoclastogenesis inhibitory factor (OCIF) gene 

2 X77471.1 Homo sapiens human tyrosine aminotransferase(tat) gene 

3 AB035346.2 Homo sapiens T-cell leukemia/lymphoma 6(TCL6) gene 

4 AJ225085.1 Homo sapiens Fanconi anemia group A(FAA) gene 

5 AF009962 Homo sapiens CC-chemokine receptor (CCR-5) gene 

6 X59065.1 H.sapiens human acidic fibroblast growth factor(FGF) gene 

7 AJ223321.1 Homo sapiens transcriptional repressor(RP58) gene 

8 X92412.1 H.sapiens titin(TTN) gene 

9 U01317.1 Human beta globin sequence on chromosome 11 

10 X51502.1 H.sapiens gene for prolactin-inducible protein (GPIPI) 

 

The steps in adaptive exon prediction are as 

follows:  

 

a) Input DNA sequences are chosen from NCBI 

database. Using binary mapping technique convert 

DNA sequence to binary data. Provide obtained 

binary data as input to AEP structure shown in 

Figure-1.  

b) A biological sequence obeying three base periodicity 

is given as reference to the AEP. 

c) As shown in Figure-1, a feedback signal that is 

generated is used to update filter coefficients.  

d) The feedback signal when becomes minimum, the 

location of the coding region sequence is predicted 

accurately.  

e) With the help of power spectral density, location of 

the predicted exon region is plotted. The performance 

measures like Sn, Sp and Pr are measured.  
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Figure-3. Locations of exons predicted using various adaptive algorithms, (a). LMS based AEP, (b). DCLMS based AEP, 

(c).  ECLMS based AEP, (d). DECLMS based AEP, (e). DNLMS based AEP, (f). DNDCLMS based AEP (g).DNECLMS 

based AEP, and (h). DNDECLMS based AEP 

 

Figure-3 shows the predicted exon locations of 

sequence 3 applying various adaptive algorithms. From 

this plots it is clear that the LMS based AEP is not 

predicted the coding regions accurately. This algorithm 

causes some ambiguities in location prediction by 

identifying some non-coding regions. In Figure-3 (a) some 

unwanted peaks are identified at locations 1200
th

, 2300
th
 

and 3700
th

 sample values. At the same time the actual 
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exon location 4084-4268 is not predicted. Prediction 

measures such as sensitivity, specificity and precision of 

DCLMS, ECLMS and DECLMS algorithms are observed 

a bit inferior than LMS adaptive algorithm where these are 

much better in case of normalized algorithms. In the case 

of normalized versions, the DNLMS, DNDCLMS, 

DNECLMS and DNDECLMS algorithms exactly 

predicted the exon locations at 4084-4268 with good 

intensity of PSD are observed. These PSDs are shown in 

Figures 3 (b), (c) and (d). 

Because of the normalization involved in these 

algorithms the tracking capability of these algorithms is 

better than LMS algorithm. Among these three algorithms 

DNDCLMS is found to be better with reference to its 

computational complexity and convergence 

characteristics. This algorithm needs only two 

multiplications, the number of multiplications involved in 

this algorithm are independent of tap length of AEP. The 

convergence characteristics of DNDCLMS are better than 

other normalized algorithms. In the case of DNDECLMS, 

due to clipped input sequence and clipped feedback signal 

the performance of exon perdition is inferior to other 

signed versions. Therefore, based on computational 

complexity, convergence characteristics, exon prediction 

plots, Sn, Sp and Pr calculations, it is found that 

DNDCLMS based AEP is found to be the better candidate 

in practical applications.  

 

Table-3. Performance measures of various AEPs with respect to Sn, Sp and Pr calculations. 
 

Seq. no. Parameter LMS DCLMS ECLMS DECLMS DNLMS DNDCLMS DNECLMS DNDECLMS 

1 

Sn 0.6286 0.5813 0.5313 0.4413 0.7085 0.6872 0.6687 0.6436 

Sp 0.6435 0.6261 0.5774 0.5171 0.7267 0.7043 0.6802 0.6642 

Pr 0.5922 0.5694 0.5334 0.5278 0.6954 0.6722 0.6545 0.6115 

2 

Sn 0.6384 0.6023 0.5802 0.4486 0.7137 0.6996 0.6741 0.6582 

Sp 0.6628 0.6054 0.5745 0.5171 0.7458 0.7263 0.7057 0.6876 

Pr 0.5894 0.5727 0.5583 0.5429 0.7027 0.6638 0.6336 0.6195 

3 

Sn 0.6437 0.6236 0.5937 0.4835 0.7227 0.7027 0.6838 0.6612 

Sp 0.6587 0.6084 0.5716 0.5581 0.7321 0.7137 0.6946 0.6736 

Pr 0.5902 0.5694 0.567 0.5587 0.6987 0.6602 0.6435 0.6295 

4 

Sn 0.6273 0.5473 0.5136 0.4831 0.7086 0.6862 0.6694 0.6462 

Sp 0.6405 0.6315 0.5756 0.5257 0.7278 0.7036 0.6851 0.6674 

Pr 0.5858 0.5634 0.5586 0.5489 0.7096 0.6734 0.6553 0.6156 

5 

Sn 0.6481 0.5849 0.4762 0.4514 0.724 0.7026 0.6852 0.6614 

Sp 0.6518 0.6105 0.5799 0.5684 0.7378 0.7114 0.6902 0.6707 

Pr 0.5904 0.5751 0.571 0.5704 0.6927 0.6672 0.6433 0.6225 

6 

Sn 0.6162 0.6072 0.5827 0.4528 0.7162 0.6814 0.6524 0.6372 

Sp 0.6324 0.6151 0.5633 0.4765 0.7284 0.7035 0.6727 0.6582 

Pr 0.5786 0.5686 0.5463 0.5329 0.6857 0.6526 0.6295 0.6084 

7 

Sn 0.6193 0.5929 0.5364 0.4927 0.7192 0.6894 0.6602 0.6492 

Sp 0.6529 0.6145 0.5746 0.5049 0.7396 0.7112 0.6994 0.6776 

Pr 0.5896 0.5764 0.5345 0.5132 0.6904 0.6793 0.6484 0.6175 

8 

Sn 0.6241 0.5915 0.5705 0.4862 0.7162 0.6814 0.6524 0.6372 

Sp 0.6289 0.6438 0.5726 0.4686 0.7284 0.7035 0.6727 0.6582 

Pr 0.5856 0.5753 0.5539 0.5191 0.6857 0.6526 0.6295 0.6084 

9 

Sn 0.6268 0.5941 0.534 0.4562 0.7285 0.7074 0.6786 0.6512 

Sp 0.6452 0.565 0.5481 0.432 0.7393 0.7068 0.6874 0.6642 

Pr 0.5814 0.5726 0.5362 0.5052 0.6896 0.6554 0.6285 0.5893 

10 

Sn 0.6202 0.5848 0.564 0.4321 0.7286 0.7046 0.6772 0.6598 

Sp 0.5965 0.5457 0.5243 0.5152 0.6976 0.6738 0.6546 0.6353 

Pr 0.5761 0.5525 0.5372 0.5151 0.6825 0.6688 0.6458 0.6156 
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5. CONCLUSIONS 

In this paper, the problem of identifying exons in 

a DNA sequence is illustrated. The concept of predicting 

the exact location of exons has several applications in 

current health care technology. At this point, we 

considered adaptive exon identification technique. To 

fulfill this we considered data clipped, error clipped, data 

error clipped adaptive LMS algorithms to minimize the 

number of computations. In order to further reduce 

computational complexity of the proposed 

implementation, we introduced the concept of 

normalization in addition to conventional LMS. To further 

minimize the computational complexity the proposed 

DNLMS algorithm is combined with its sign based and 

normalized algorithms. As a result seven new hybrid 

algorithms come into the scenario of exon prediction. The 

hybrid variants are DCLMS, ECLMS, DECLMS, 

DNLMS, DNDCLMS, DNECLMS, and DNDECLMS are 

considered for the current implementation. Different AEPs 

are developed and tested using these seven algorithms on 

real DNA sequences obtained from NCBI database. It is 

evident that DNDCLMS based AEP is better in exon 

prediction applications, based on the convergence 

characteristics shown in Figure-2 and computational 

complexities shown in Table 1. This is also clear from the 

performance measures tabulated in Table-3 and PSD of 

exon locations shown in Figure 3. Proposed AEPs exactly 

predicted the exon locations at 4084-4268 with good 

intensity as shown in PSD plot. The proposed DNDCLMS 

based AEP based realization provides superior 

performance in terms of computational complexity based 

on performance measures with Sensitivity 0.6872, 

Specificity 0.7043 and precision 0.6722 obtained at a 

threshold value of 0.8. Therefore, the proposed normalized 

based AEPs are suitable for practical genomic applications 

for the development of nano devices, LOCs, and SOCs. 
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