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ABSTRACT 

In order to reduce the physical trauma caused by breast compressions, exposure to radiations and the high price of 
diagnostic tests, a new cost effective magnetic induction tomography (MIT) system is proposed to identify and locate 
tumors among the heterogeneous breast tissues. This technique operates in a non-invasive and contactless manner with the 
breasts. The numerical simulation imaging system consists of 16 sensor coils with 1 coil acting as the transmitter and the 
rest as receivers at a single time period, leading to a total of 240 receiver readings. The receiver readings and 240 generated 
sensitivity matrices were then used to reconstruct the images of the breast using linear back projection (LBP) algorithm 
after a careful comparison has been made on the algorithm with newton one-step error reconstruction (NOSER) and 
truncated singular value decomposition (TSVD) algorithms. The reconstructed images were assessed in terms of three 
essential error metrics which are the resolution (RES), magnification (MAG), and the position error (PE). The average 
errors are 0.004728, 13.7793, and 45.1929 for the RES, MAG and PE metrics respectively. Nonetheless, the average error 
metric values for the images of tumors located deepest, at the origin (0, 0), show better results in terms of PE that is -
2.5356. A strong correlation between the MIT sensor readings and the size of simulated breast tumor was also observed 
from the adjusted R square value which is 0.998, indicating that the data fitted are very close to the regression line. The 
obtained results verify that the proposed MIT design and image reconstruction algorithm provide a promising alternative 
for breast cancer imaging although further studies are required to validate the simulation MIT data. 
 
Keywords: magnetic induction tomography, breast cancer, numerical simulations, LBP, image error metrics, regression line. 
 
INTRODUCTION 

Breast cancer is a throbbing sickness that no 
longer needs an introduction. This is especially true among 
ladies because of their unique breast structure that has 
more breast tissues when compared with that of man's. It is 
been anticipated that in 2016, at least 249260 new cases of 
breast cancer diagnosis and 40890 deaths will be 
accounted for [42]. In Malaysia, around 5000 ladies are 
determined to have the disease annually where almost 
50% of them are under 50 years of age [43]. Aside from 
late diagnosis due to the lack of awareness of the disease, 
the reason adding to the huge figure could be because of 
current restrictions emerging from modalities like the 
magnetic resonance imaging (MRI), ultrasound and X-
beam mammography [1]. New procedures which have the 
potential to defeat the constraints of the traditional gold 
standard breast tumor imaging methodology, depend upon 
the alterations in the electrical properties and 
subsequently, the electrical impedance of the breast tissues 
due to the vicinity of high vasculature in the presence of 
malignancies [2]. 

This has recommended the electrical impedance 
tomography (EIT) which infuses a significantly little 
amount of alternating current into the body through an 
array of electrodes [3]. On the other hand, the 
disadvantages of EIT are mistakes gotten by poor skin to 
electrode contact, the inability to know the accurate area 
of terminals because of human body surface variability, 
and, the certain very sensitive parts of the body [4]. In 
conjunction to that, a method proposed to overcome the 
electrode placement errors would be the non-tactile MIT 
[3]. The operation of MIT is initialized when a transmitter 

coil introduces a primary magnetic field into the breast 
tissue, thereby also inducing some electrical currents in the 
receiver coil as a function of magnetic induction. A 
perturbation of the primary magnetic field, the secondary 
field, will be generated upon transmission through the 
electrically conductive medium of the breast and tumor 
volumes. Therefore, a voltage difference that is derived 
from both the aforementioned magnetic signals collected 
from the receiver coil, estimates the inductive phase shift 
which denotes the malignancy status of the breast [4]. 

In recent years, MIT has been a success in 
imaging non-medical applications like the imaging of steel 
in reinforced concrete [5] , in the oil and gas industry [6], 
and, in the two phase flow imaging [7]-[8]. However, very 
few have been reported to date on its application in 
imaging biological tissues or in the medical field. Among 
them is in [9], where the authors came up with an 
improvised NOSER technique for the reconstruction of 
three-dimensional (3D) phantom images . The 
improvement was made on the Hessian matrix that is 
based on the Jacobian matrix (generally ill-conditioned for 
most MIT and EIT modalities). Singular value 
decomposition (svd) method was used to first determine 
the condition number, which denotes the extent to which 
the Jacobian matrix is ill conditioned. Then, the diagonal 
element of one of the three decomposed matrices is altered 
and the product of the new inverse matrices is obtained to 
get the improvised Hessian matrix. The proposed NOSER 
algorithm was found to have the best correlation 
coefficient of 98.22%, with the Tikhonov regularization 
80.33%, and NOSER 85.68%. The algorithm proposed in 
the paper also showed better resolution and anti-noise 
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characteristics. Dekdouk,  in his thesis, mentioned about 
MIT applications in lung ventilation and heart monitoring 
[6]. In his work, he applied TSVD and Tikhonov 
regularization methods. 

MIT of a realistic 3D bio-impedance head model 
with a new linear image reconstruction algorithm was 
developed via an optimization process to obtain the best 
mapping between the training parameters set, and, their 
respective measurements from the forward solution of the 
finite element problem in [10]-[11]. The 3D model of the 
human head was derived from a set of magnetic resonance 
(MR) images. The proposed reconstruction method, when 
compared with the single-step regularized Gauss-Newton 
method [12], has reduced the reconstructed image error by 
15%. A realistic peripheral cerebral haemorrhage with 12 
tissue types was detected by a hemispherical MIT helmet 
46-coil system in [13]-[14]. The simulation works were 
done using Comsol Multiphysics software at frequencies, 
1 and 10 MHz. The resulting images were reconstructed 
using one-step Tikhonov regularized algorithm, with 
Gaussian phase noise added to the system. Zolgharni and 
team then extended the work by adding errors due to a 
displacement of the head and the size scaling. The results 
showed that a sufficiently good image could be obtained 
when the noise level, the displacement, and the scaling 
error are within 3 m degree, 3-4 mm and 3-4 %, 
respectively [12]-[13]. Wei and Wilkinson, in their paper 
developed the circuitry for a multichannel MIT data 
acquisition system. The novel design included a shielded 
coil structure with an integrated current measurement and 
a single-chip solution for the I/O demodulation. A 
maximum phase shift was observed to be around 2.5 at 10 
MHz for the saline solutions with conductivity range akin 
to of biological tissues [15].  

In 2004, MIT of low conducting materials were 
simulated and experimentally validated. The image 
reconstruction algorithm used was TSVD [16]. A 
regularized single step Gauss-Newton inverse solution was 
implemented for a MIT system with 16 excitation coils 
and 32 receiver coils.  Four different regularization 
matrices were compared: identity matrix (IM), 
neighborhood matrix (NM), TSVD and variance 
uniformization (VU). The VU method outperformed all 
other methods with respect to the localization accuracy, 
the resolution and the edge sharpness, but, on the other 
hand, produced a larger variance in the images [17]. In 
[18], the inverse problem was solved using Tikhonov 
regularization technique for a 16- channel MIT system 
operating at 10 MHz. The MIT system was designed 
primarily for imaging biological tissues having 

conductivity values lesser than 10 1Sm . The average 
induced phase shift attained in this system is 17 m degrees 
[18]. Motivated by the previous works done on MIT for 
biological tissues, our team has proposed a 16-channel 
MIT system for imaging the breast tumor using LBP 
image reconstruction algorithm. This study is an extension 
of our work in [19], using the frequency with the best 
results in [19], and a higher number of transceivers for 
tissue imaging purposes. In [19], our team has made a 

comparative study with [2], to detect breast cancer using 
magnetic induction spectroscopy (MIS) technique. In this 
study, we have concluded that our proposed coil 
configuration has a higher inductive phase shift intensity, 
which denotes the presence and absence of a breast tumor. 
 
METHODS: FINITE ELEMENT SIMULATION 

This section describes the developed two 
dimensional (2D) MIT setup model with the finite element 
method and simulation criteria involved. The feasibility of 
the magnetic induction concept in detecting breast tumors 
in a non-invasively and non-tactile manner is also 
explained. Figure-1 shows the flow chart of the overall 
work done in this paper. 
 
Numerical simulation model 

The simulation model consists of 16 transceiver 
sensor coils (circles) with 1 coil acting as the transmitter 
(excited by 1 A) and the rest acting as receivers at a single 
time period. The rectangle speaks to the insulator (i.e., 
air), while the ellipses, two greater and one smaller circles 
represent the breast fibro-glandular ,fat , skin and tumor 
tissues individually (refer to Figure-1). The improvement 
made in this study in terms of the numerical breast model, 
is the realistic non-uniform heterogeneous breast tissue 
model (scattered fibro-glandular tissues within the fat 
layer) [34]. Although most previously developed breast 
models for other breast cancer diagnosing techniques are 
in 3D [35]-[38], the multilayer tissues are uniformly 
arranged which can lead to certain deviations in the actual 
scenario involving patients. This is especially true when 
the tumor overlaps with normal breast tissues. 
 

 
 

Figure-1. 2D MIT system and a multilayer breast 
tissue model. 
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Figure-2. Flow chart of the methodology. 

Finite element method and simulation criteria 
The workstation used for the simulation works 

comprises of a Dell Inspiron PC with an i5 processor and 
8GB RAM. In Comsol, a triangular cross section with a 
linear and iterative solver was utilized. The default solver 
relative resilience is 0.001. Table-1 presents the 
parameters included in the study. The estimations of the 
conductivity and permittivity of the typical human breast 
tissues and tumor tissue are taken from [2] [31]. The 10 
MHz frequency, with which the simulations are led, is 
purposely chosen to be in the β scattering locale where 
most pathological changes occur [19]-[20], [13]-[15], [18]. 
In the meantime, a time harmonic and quasi-static 
assumption, Equation (1), was additionally made in the 
Ampere's equation utilized in Comsol to produce the 
magnetic vector potential distribution in the model. As 
such, the displacement current streams in the Ampere's 
mathematical statement were disregarded, and a non-
moving geometry was considered with no external electric 
potential gradient. 
 

eJAAj   ))(()( 12 
               (1) 

 
where  is the medium permeability (henry/meter) and   

is the medium permittivity (farad/meter),  is the medium 
conductivity (siemens/meter),  is the angular frequency,  

J e  is the external electric current density (ampere/ meter 2

), and  A is the magnetic vector potential( A


). 
 

 
Table-1. List of parameters of the simulation model. 

 

Parameters Values 

Number of turns of coils 5 

Current applied at coils 
Excitation coil: 1 A 
Detecting coils: 0 A 

Coil type Linear 

Coil material Copper 

Diameter  of coils 0.015 m 

Diameter of breast fat 0.06 m 

Thickness of skin tissue 0.005 m 

Size of insulator 0.4 m * 0.4 m 

Frequency used 10 MHz 

Di-electrical properties of the breast 
fat tissue 

Conductivity: 0.02806 S/m 
Permittivity: 7.8933 

Di-electrical properties of fibro- 
glandular tissue 

Conductivity: 0.71954 S/m 
Permittivity: 162.73 

Di-electrical properties of skin (dry) 
Conductivity: 0.197323 S/m 

Permittivity: 361.670349 
Di-electrical properties of the breast 

tumor tissue 
Conductivity: 8.2 mS/m 

Permittivity: 300 
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Magnetic induction concept 
The tumor of the breast tissue could be 

distinguished using magnetic induction when electrical 
waves are transmitted to one of the sensor coils 
(transmitter) of the tomography framework, producing an 
attractive field around the coil as per the Ampere's law 
(refer to Figure-3). This attractive magnetic field when 
going through the heterogeneous breast tissues and tumor 
thus impels the perturbed eddy current present as an 
element of di-electrical properties that exist in the tissues 
and also in the rest of the sensor coils (receivers), 
restricting the change that is brought on it. This also 
complies with Lenz's and Faraday's law of induction, Eq. 
(2): 
 

t





                                                                       (2) 
 
where   is the induced voltage, the negative sign 
signifies the direction, and   is the adjustment in the 

magnetic flux created.  
 

 
 

Figure-3. Simulation output resulting from excitation of 
the 16th sensor. 

 
The subsequent inductive phase shift, which 

indicates the presence and absence of a tumor, depends on 
the distinction in the power of the induced voltage 
identified at the receiving coils. In Comsol, the induced 

voltage, 
mn

V  observed when transceiver m is activated 

and transceiver n acts as a receiver, is evaluated by 
performing a surface integration of the product of the 
current density and magnetic vector potential at the 
receiver coils utilizing the mathematical statement given 
as part of [8], Eq. (3): 
 

dSJAjV
cmn 0 

                                              (3) 
 

where   A and 0J are the magnetic vector potential and 

current density passing through the coil respectively. 

While the normalized induced voltage phase shift is 
calculated using Eq. (4): 
 

ref
V

ref
V

mn
V

V




                                                    (4)

 

 

where 
ref

V  is the 
mn

V when the simulation is done on 

only coils, without the breast tissues for normal breast 

tissues phase shift readings, and, it is the mn
V when the 

simulation is done on the breast tissues without the 
presence of tumor tissue (normal) for breast tissue with the 
presence of tumor phase shift reading calculations. 
 
METHODS: IMAGE RECONSTRUCTION 
 
Sensitivity matrix calculation 

The sensitivity grid map for a given sensor setup 
is an essential step in the inverse part of every forward 
simulation problem. The sensitivity matrix, S, shapes a 
premise set from which image vectors can be acquired 
[21]-[22]. Fundamentally, every pixel of S speaks to the 
effect of the sensor framework to every conductivity pixel 
in a uniform distribution of sample [23]:  
 

0

2

I

vAAV
S

nm

k

mn k






 


                              (5) 
 

where mnV  is the voltage reading, k is the conductivity 

of pixel k, k is the area of the perturbation k, mA and 

nA  are magnetic vector potential solutions when the 

excitation coil m is excited by 0I and when the sensing 

coil n  is excited with unit current, respectively. 
The sensitivity matrix is carefully construed in 

accordance to Eq. (5) and is then generated in MATLAB; 
refer to Figure-4. The following are the procedures to 
construct a single sensitivity map: 
 
Step 1: Excite every sensor one at a time, and store the 

resulting Comsol simulation data of magnetic 
vector potential in the form of a 128*128 pixels 
grid. The arguments of the complex magnetic 
vector potential are obtained using the equation 
provided in [3]. 

Step 2: Compute the dot product of the magnetic vector 
potential maps for each and every transceiver pair 
(Total number of pairs: 16 transmitters * 15 
receivers = 240 matrix).  

Step 3: Sum all the matrix generated in Step 2. The final 
matrix is called the weight balance map (WBM). 
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Step 4: Normalize each sensitivity matrix (matrices 
generated in Step 2) by dividing it by the 
maximum pixel intensity, Pm of WBM. 

 
Image reconstruction algorithms  

There are numerous image reconstruction 
algorithms, for example, linear back-projection, nonlinear 
algorithms, and filtered back projection; however, in this 
article, only the LBP, NOSER and TSVD algorithms are 
utilized as they have become well-known techniques 
among analysts due to their low computation requirements 
and their basic and quick response as an algorithm. 
 
LBP  

The LBP calculation is based on the product of 
multiple matrices. Keeping in mind that the end goal is to 
reproduce the forward solution, each sensitivity map is 
multiplied by its relating sensor reading and summed. 
Although LBP produces blurred images with artifacts and 
1/r image roll offs, it is still the fastest compared to other 
more accurate techniques [24]. The mathematical equation 
of LBP is stated in Equation (6). 
 

 

 

 

 

 

 

Figure-4. Sensitivity maps of transmitter 1 with 
corresponding receivers (T1R1-T1R15). 

 


 


8

0

7

0
,, ),(),(

Tx Rx
RxTxRxTxLBP yxMXSyxV

               (6) 
 
where, ),( yxVLBP  is the voltage distribution obtained 

using LBP algorithm in n x n matrix where n is equals to 

dimension of sensitivity maps, ),(, yxM RxTx is the 

induced voltage phase shift in Rxth sensor coil for Txth 

projection, RxTxS , is the normalized sensitivity matrices 

for the view of Tx-Rx. 
 
NOSER 

NOSER algorithm which is a derivative of the 
common iterative Newton-Raphson calculation is based on 
the least squares theory. NOSER algorithm estimates the 
conductivity distribution of the resulting images by 
utilizing only one step of the Newton’s method thereby 
reducing the computational time. The single step is done 
by calculating the sensitivity matrix (also known as 
Jacobian matrix) just once and then modifying it by means 
of parameter λ and matrix R [9].  The NOSER formula [9] 
is 
 

T1R1 T1R2

T1R3 T1R4

T1R5 T1R6

T1R7 T1R8

T1R9 T1R10

T1R11 T1R12

T1R13 T1R14

T1R15
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
 


8

0

7

0
,,

1 ),(*][
Tx Rx

RxTxRxTx yxMXSHessian
  (7) 

 

where 
T

RxTxRxTx SSHessian ,, * , RxTxS , is the 

normalized sensitivity matrices for the view of Tx-Rx, 

),(, yxM RxTx is the corresponding induced voltage phase 

shifts in the receiver coils. 
 
TSVD  

Truncated singular value decomposition is a 
famous regularization technique used to alter certain ill-
conditioned sensitivity matrices that are singular or have 
very small values. The sensitivity matrix generated in 
section 3.1 is first decomposed into three constituent 
matrices which are U, W and Y’. The diagonal elements of 
W (wi) are the singular values which are set to zero when 
they have very small values, depending on the condition 
number of the ill-conditioned sensitivity matrix [16]. The 
conductivity distribution is estimated by taking the inverse 
of the altered decomposed elements using  
 

MUwdiagY T
i )]/1([

                                      (8) 
 

where Y is a n x n unitary matrix, U is a m x n unitary 

matrix, M   is the corresponding induced voltage phase 
shifts in the receiver coils. 
 
METHODS: QUALITY ANALYSIS OF THE 
RECONSTRUCTED IMAGES 

In order to measure the quality of the 
reconstructed images, several analyses have been 
performed. The images were assessed in terms of 
resolution, magnification, position error, shape 
deformation, peak signal to noise ratio as well as mean 
structural similarity index. The first four assessments were 
originally proposed for EIT modality which are based on 
GREIT standard [23]; however, they have also been 
applied in MIT applications [24]-[26].  
 
Resolution (RES)  

RES measures the proportion of reconstructed 
tumors with respect to the entire medium and is expressed 
as  
 

0A

A
RES q

                                                                (9) 
 
where Aq is the number of pixels covered by the 
reconstructed tumor and Ao is the number of pixels 
covering the entire medium of reconstruction. The RES 
should be uniform and small to represent a target more 
accurately in the conductivity distribution 
 
 

Magnification (MAG)  
MAG is used to compare the size of the 

reconstructed tumor, RES (q) with the actual size of 
tumor/target, RES (t). If MAG is equals to 1, then the size 
of the reconstructed image is identical to the original 
image. Refer Equation (10). 
 

)(

)(

tRES

qRES
MAG 

                                                      (10) 
 
Position Error (PE)  

PE determines the extent to which the 
reconstructed tumor represents the actual tumor or target 
location. An acceptable PE should be small and vary less 

for every tumor positions. Depending on the target, tr
 and 

reconstructed tumor, qr
 position from the centroid of the 

whole image, region of interest (ROI), PE is expressed as 
in Equation (11) 
 

qt rrPE -
                                                                 (11) 

 
where rt= distance of target from center of ROI/radius of 
ROI. 
 
Shape deformation (SD)  

SD measures the extent to which a reconstructed 
tumor follows the shape of the circular target. This is done 
by dividing the number of reconstructed tumor pixels, Ao 

outside a circle, which is of equivalent area, with the 
number of pixels covering the entire reconstructed tumor 
region, Aq. A good quality set of images has low and 
uniform SD, refer Equation (12). 
 

Aq

Ao
SD 

                                                                    (12) 
 
Peak Signal to Noise Ratio (PSNR) 

The PSNR calculates in decibels, the peak of 
signal-to-noise ratio between the reference image and 
reconstructed image. The good quality of the reconstructed 
image is determined by the higher value of PSNR. In order 
to measure PSNR (peak error), MSE that is the measure of 
cumulative squared error between two images is computed 
first.  The error is said to be less when MSE is low. Refer 
Equation (13) and Equation (14). 
 

NM

nmInmI

MSE NM

*

)],(),([
,

2
21 


                        (13) 

 
where, M and N are the number of rows and columns in 
the input images, respectively.  
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)(log10
2

10 MSE

R
PSNR 

                                          (14) 
 
where, R is the maximum fluctuation in the input image 
data type.  
 
Mean Structural Similarity Index (MSSIM)  

MSSIM is used to compare the similarity 
between reference image and the reconstructed image in 
terms of its structure, luminance as well as contrast. 
MSSIM is equals to one when the reconstructed image 
exactly replicates the true image. Eq. (15) and Eq. (16) 
represent the mathematical definition of MSSIM 
 





M

j
jj yxSSIM

M
YXMSSIM

1

),(
1

),(
                (15) 

 
 )],([)],([)],([),( yxsyxcyxlyxSSIM         (16) 

 
where X is the reference image, Y is the reconstructed 
image, x and y are the image contents at the jth local 
window, M is the total number of local windows, l, c, and 
y are the luminance, contrast and structural comparison 
function with α, β and γ being the parameters to adjust 
their relative importance respectively. 
 
METHODS: PARAMETRIC STATISTICAL 
ANALYSIS 

Curve fit regression modeling is a tool used to fit 
the data of interest to a model. The accuracy of the fit is 
then analyzed in terms of R-squared value and 
coefficients. The independent variables or parameters, of 
the data, are known as the predictors while the dependent 
variables as the responses [32]. In this study, the predictors 
are the size of tumor and the responses are the 
corresponding sensor readings. The descriptive analysis 
tool that is also used in this study is ANOVA, an extension 
of the t and z-test, which is a statistical method for analysis 
of variance. The t-test, however, cannot be used in this 
study as it is not applicable for more than two groups. In 
this work, this analysis is done to obtain the statistical 
significance of the MIT sensor coil readings in 
differentiating the size of the breast cancer. The features or 
readings that are truly significant will have F and p-value 
that reject the null hypothesis. The null hypothesis simply 
assumes that if the probability (p-value) is greater than 
0.05 and the F value is less than or equals to 1, then the 
features are not significant. The significance in here means 
that the features are not similar and are able to be utilised 
to differentiate between classes. The results of the 
aforementioned analysis are shown in the section 7.  
 
 
 
 

RESULTS AND DISCUSSIONS 
The results in this study are presented in two 

parts. The first part discusses the results of the analysis 
works done using 8-channel, MIT (half the number of 
sensors used in the proposed system) while the second part 
is on the analyses done using the proposed system that is 
the 16-channel MIT. The comparative system analysis is 
done on the 8-channel MIT system prior to the proposed 
system. This is to determine the reliability of the proposed 
concept and the best reconstruction algorithm to be used 
for the 16-channel MIT, as it reduces the computational 
time and system complexity significantly, without having 
to be analyzed on the proposed system directly.  
 
Eight-channel MIT  
 
MIT sensor array activation profile  

Table-2 shows the readings of the transceiver 
sensor coils derived from the Comsol simulations for 
different cases in terms of induced voltage (IV), as well as 
the inductive phase shift (IPS) calculations. Since the IV 
profiles are the same for every case, only the normal case 
IV profile is shown. The receiver readings for each case 
are tabulated in such a way that the first receiver reading 
for every excitation (transmitter 1-8), is calculated from 
the sensor adjacent to the sensor being excited by 1A [2]-
[3]. This is followed by the remaining sensors according to 
the sequence shown in Figure-3. The top most profile 
presented is the IV readings in terms of voltage, V, for the 
normal breast tissue case model (without tumor tissue 
presence). The readings are the lowest for the neighboring 
sensors and the highest for the sensors located furthest 
from the transmitting sensor. This is due to the very low 
magnetic vector potential and current density distribution 
which are detected at the receiving sensor coils that it falls 
in the negative range of values, since the tissues being 
imaged are also of very low conductivity values. Thus, 
although the initially detected individual aforementioned 
parameters are significantly highest for the adjacent 
sensors as they are the closest to the transmitting coil, they 
become the lowest once the readings are computed in 
terms of IV.  

On the other hand, the IPS measurement profiles 
for the normal breast tissue with and without the center 
positioned tumor are almost similar to one another as the 
imaging object are both placed at the center of the  MIT 
system. Therefore, only receiver readings number 3, 4 and 
5 of the system which are at the opposite side of the 
transmitting sensors consistently show higher readings 
than the rest of the sensors. This suggests that the imaging 
objects are almost exactly or exactly overlapping on the 
pathway of the signal transmitted to the receiver coils, 
thereby inducing a delay in the received signals that is 
interpreted as IPS in this study. A similar pattern is 
observed for the remaining case profiles, where a higher 
IPS is reflected at the receiving ends which the pathway of 
transmission is obstructed or perturbed by the presence of 
tumor(s). 

 



                                    VOL. 11, NO. 23, DECEMBER 2016                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                             13572 

Table-2. MIT sensor array activation profiles. 
 

Receiver 
Transmitter 1 2 3 4 5 6 7 

1 1.6746 4.6856 7.5192 8.9541 7.5405 4.3994 1.6368 
2 1.6431 4.3022 7.3712 8.6981 7.3317 4.4180 1.6746 
3 1.5664 4.3636 7.4460 8.7385 7.5623 4.6856 1.6431 
4 1.4717 4.1691 7.0301 8.4431 7.5192 4.3022 1.5664 
5 1.5608 4.2193 7.2325 8.9541 7.3712 4.3636 1.4717 
6 1.4801 4.1720 7.5405 8.6981 7.4460 4.1691 1.5608 
7 1.4586 4.3994 7.3317 8.7385 7.0301 4.2193 1.4801 
8 1.6368 4.4180 7.5623 8.4431 7.2325 4.1720 1.4586 

Description Normal breast tissue (IV) 
1 2.02E+13 1.90E+14 5.91E+14 8.83E+14 5.93E+14 1.78E+14 1.97E+13 
2 1.98E+13 1.71E+14 5.80E+14 8.42E+14 5.76E+14 1.76E+14 2.02E+13 
3 1.89E+13 1.77E+14 5.85E+14 8.62E+14 5.95E+14 1.90E+14 1.98E+13 
4 1.77E+13 1.66E+14 5.53E+14 8.17E+14 5.91E+14 1.71E+14 1.89E+13 
5 1.88E+13 1.71E+14 5.69E+14 8.83E+14 5.80E+14 1.77E+14 1.77E+13
6 1.78E+13 1.66E+14 5.93E+14 8.42E+14 5.85E+14 1.66E+14 1.88E+13 
7 1.76E+13 1.78E+14 5.76E+14 8.62E+14 5.53E+14 1.71E+14 1.78E+13 
8 1.97E+13 1.76E+14 5.95E+14 8.17E+14 5.69E+14 1.66E+14 1.76E+13 

Description Normal breast tissue (IPS ) 
1 0.0027 0.0036 0.0046 0.0049 0.0046 0.0037 0.0027 
2 0.0027 0.0038 0.0047 0.0050 0.0047 0.0038 0.0027 
3 0.0028 0.0038 0.0046 0.0050 0.0046 0.0036 0.0027 
4 0.0029 0.0039 0.0048 0.0051 0.0046 0.0038 0.0028 
5 0.0028 0.0039 0.0047 0.0049 0.0047 0.0038 0.0029 
6 0.0029 0.0039 0.0046 0.0050 0.0046 0.0039 0.0028 
7 0.0029 0.0037 0.0047 0.0050 0.0048 0.0039 0.0029 
8 0.0027 0.0038 0.0046 0.0051 0.0047 0.0039 0.0029 

Description Breast tissue with tumor at (0,0) coordinate (IPS) 
1 0.0020 0.0041 0.0059 0.0045 0.0028 0.0018 0.0011 
2 0.0044 0.0069 0.0059 0.0043 0.0032 0.0024 0.0020 
3 0.0081 0.0073 0.0060 0.0051 0.0044 0.0041 0.0044 
4 0.0068 0.0059 0.0056 0.0056 0.0059 0.0069 0.0081 
5 0.0031 0.0032 0.0037 0.0045 0.0059 0.0073 0.0068 
6 0.0015 0.0020 0.0028 0.0043 0.0060 0.0059 0.0031 
7 0.0011 0.0018 0.0032 0.0051 0.0056 0.0032 0.0015 
8 0.0011 0.0024 0.0044 0.0056 0.0037 0.0020 0.0011 

Description Breast tissue with  tumor at (0.03,-0.02) coordinate (IPS) 
1 0.0046 0.0077 0.0106 0.0094 0.0074 0.0055 0.0038 
2 0.0072 0.0108 0.0106 0.0093 0.0078 0.0062 0.0046 
3 0.0109 0.0111 0.0106 0.0100 0.0091 0.0077 0.0072 
4 0.0098 0.0098 0.0104 0.0107 0.0106 0.0108 0.0109 
5 0.0060 0.0071 0.0084 0.0094 0.0106 0.0111 0.0098 
6 0.0044 0.0059 0.0074 0.0093 0.0106 0.0098 0.0060 
7 0.0040 0.0055 0.0078 0.0100 0.0104 0.0071 0.0044 
8 0.0038 0.0062 0.0091 0.0107 0.0084 0.0059 0.0040 

Description Breast tissue with tumors at (0.03,-0.02) and at (0,0) coordinates (IPS) 
 

Moreover, the maximum IPS is 8.05 m degrees 
for single breast tumor detection. This value is lesser than 
those reported in [15] and [18] as the tissues being imaged 
in their studies are of higher conductivity values. Hence, 
the magnetic induction phenomenon occurs at a higher 
rate and subsequently yields a higher maximum IPS 
reading. 
 

Reconstructed images using LBP, NOSER and TSVD 
algorithms  

Figure-5 represents five different conductivity 
profiles of the true imaging model described in section 2. 
Figure 5 (a) illustrates the tumor at center position (0, 0) 
while (b), (c), (d) and (e), at coordinates (0.04, 0), (-0.03, 
0.04), (-0.04,-0.01) and (-0.03,-0.04), respectively. 
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(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure-5. True breast model images. 
 

Meanwhile, the reconstructed images are shown 
in Figure 6. The images are arranged in a 5 x 3 matrix 
manner whereby the rows determine the tumor positions 
as per described and arranged in Figure-5, while the 
columns denote the methods of image reconstruction used. 
The first column of images is generated using LBP 
algorithm, followed by NOSER and TSVD.  Upon 
reconstruction using the aforementioned methods, the 
images of tumors at distinct positions were normalized and 
subtracted from the normal breast tissue image. The 
resulting images were then subjected to a threshold value 
in order to obtain binary final images as shown in Figure-
6. The threshold value for the binary normalized images 
was set to 0.01 for LBP reconstructed images and 0.001 
for the other two reconstruction algorithms based on 
empirical observations. However, only for Figure-6 (a), 
(f), and (k), the normalization is done after subtraction as 
the usual way gives a diverged image (outside of ROI). 

Based on Figure-6, it shows evidently that the 
best technique in producing images that resemble the 
original images from Figure-5 is LBP, followed by 
NOSER and TSVD. As for NOSER and TSVD 
techniques, the only images that resemble the target image 
almost perfectly are (h) and (m). NOSER (f) and TSVD 
(k) reconstructed images show the largest deviation from 
the original image for the tumor placed at the center, 
where (f) shows false positive indication of tumor 
presence (ones or red area) at two places in the ROI 
(breast tissue represented as a circle) while (k) shows no 
tumor presence. Figure-6 (n) and (o) also reflect some 
unreliability when using TSVD for our application. To 
further strengthen the findings and to assess the quality of 
the images, quality check results of the images have been 
discussed in the following section. 
 
 
 
 
 
 

 
(a) 

 
(f) 

 
(k) 

 
(b) 

 
(g) 

 
(l) 

 
(c) 

 
(h) 

 
(m) 

 
(d) 

 
(i) 

 
(n) 

 
(e) 

 
(j) 

 
(o) 

 

Figure-6. Reconstructed images. (a), (b), (c), (d), (e) 
reconstructed images when using LBP; (f), (g), (h), (i), (j) 
reconstructed images when using NOSER; (k), (l), (m), 
(n), (o) reconstructed images when using TSVD 
regularization method. 
 
Comparison of error metrics between image 
reconstruction algorithms  

Table-3 shows the results of error metrics based 
on six important qualitative parameters that are RES, PE, 
MAG, SD, PSNR and MSSIM. Figure-6 (a), (b), (c), (d) 
and (e) denote images reconstructed from LBP technique 
while (f), (g), (h), (i), (j) and (k), (l), (m), (n), (o) denote 
images reconstructed when using NOSER and TSVD 
techniques respectively. In accordance to the GREIT 
standard of image performance merits, the most important 
error metric among four GREIT parameters used in Table-
3 is PE, followed by MAG, RES and SD. Not forgetting 
PSNR and MSSIM parameters which are equally 
important and widely used in [27]-[30].  
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Table-3. Image error metrics results. 
 

 
 

From Table-3, it can be proven that the images 
produced by LBP algorithm fulfill all of the criteria of a 
good quality image described in the previous sections as 
their RES,PE, and SD are small and uniform when 
compared to of NOSER’s and TSVD’s. Also, their PSNR 
is high with MAG and MSSIM approaching 1 for almost 
all of the images. The positive values of PE indicate that 
the reconstructed image is pushed to the centroid of ROI 
and vice versa [22]. On the other hand, NOSER images 
have double the PE value of LBP’s when compared in 
terms of the images with highest PE values, -15.2875 
(LBP) and 30.1804 (NOSER) respectively. The not 
applicable (n/a) signs are given to those images that give 
obvious false prediction of tumor locations as in Figure-6 
(f), (k), (n), (o). In addition to that, NOSER images, 
although with consistently good RES, PSNR and MSSIM 
values, are not as good in representing the true images as 
its MAG and SD values are considerably inconsistent and 
higher when compared to of LBP images. MAG values 
that are smaller than one indicate that the reconstructed 
object is smaller than its actual size and vice versa for the 
values that are bigger than one. 

As for the images reproduced by TSVD 
calculation, only two of the tumor positions are 
reconstructed with averagely good values of the 
aforementioned metrics. Therefore, it is very unlikely to 

be considered as a suitable image reconstruction technique 
for the detection and localization of breast tumor in this 
study.  
 
Sixteen- channel MIT 

The performance of the image reconstruction 
algorithms when compared, proved that the algorithm that 
has the best merits in all of the error metrics is the LBP, 
with an average of 5% (PE), 0.02 (RES), 0.84 (MAG), 
0.16 (SD), 23.67 (PSNR) and 0.98 (MSSIM) respectively. 
Therefore, here we describe the results of six images that 
are reconstructed using LBP with the proposed 16 
channeled MIT when the tumor numbers and locations are 
varied as shown in Figure-7.  
 
LBP based reconstructed breast MIT images  

Figure-7(a) shows the reconstructed image for 
tumor at (0,0) coordinate; (b), at (0.03,-0.02); (c), at (0,0) 
and (0.03,-0.02); (d), at (0.015,-0.02) and (0.015,0.02); (e), 
at (0.03,0.02) and (0.02,-0.03); (f), at (-0.03,0.02), (0.02,-
0.03), and (0.03,0.027). Whereas, the true images are the 
adjacent images, from Figure-7 (g) to (l). The figure 
proves that the proposed MIT system can successfully 
locate and identify the position of tumors among the 
healthy breast tissues although not so accurately, as there 
are considerably large variances in terms of area 
difference, RES, PE and other error metrics when 
comparing the reconstructed images  with the true images. 
This is mainly due to the lower number of sensors used to 
reduce the overall cost of production and maintenance in 
comparison with the ultrasound machines and high end 
conventional MRI that usually have hundreds of sensors.   
By reducing the overall cost, this technology could be 
used as an adjunct along with the conventional imaging 
modalities or as a screening kit atleast in the rural areas 
where unavailabilty of essential expensive medical 
equipments could be a highly crucial problem. Other than 
that, the average computational scan time of the numerical 
system is approximately 5 minutes which is much lesser 
than of a typical MRI’s which is about 45-60 minutes [41]. 
In the next section, the qualities of the reconstructed 
images are assessed in terms of the error metrics 
mentioned in Section 4. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6 RES PE MAG SD PSNR MSSIM

(a) 0.0053 0 0.2105 0.25 24.3627 0.9834

(b) 0.0197 -5.3726 0.8333 0.2 27.6726 0.9877

(c) 0.0204 -11.1054 0.8493 0.127 20.8409 0.9683

(d) 0.0348 -15.2875 1.4521 0.1509 19.8653 0.9704

(e) 0.0204 6.5728 0.8493 0.0967 25.6121 0.9844

(f) n/a n/a n/a n/a n/a n/a

(g) 0.0102 -22.4189 0.4306 0.3226 22.0158 0.974

(h) 0.0069 6.3824 0.2877 0.1905 22.4129 0.9741

(i) 0.0299 30.1804 1.2466 0.3077 19.9958 0.9673

(j) 0.0174 -24.1447 0.726 0.2264 21.1405 0.9692

(k) n/a n/a n/a n/a n/a n/a

(l) 0.0227 -12.4268 0.9583 0.1594 20.8409 0.9733

(m) 0.0112 3.5662 0.4658 0.0588 21.8504 0.972

(n) n/a n/a n/a n/a n/a n/a

(o) n/a n/a n/a n/a n/a n/a
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Figure-7. Breast images reconstructed using LBP algorithm. 
 
Image quality assessment  

In Figure-8, the results of 104 reconstructed 
images evaluated in terms of the three main error metrics 
which are the RES, MAG and PE, are shown. The 104 
images are obtained with respect to 13 different sizes of 
tumor, each at 8 different locations in the region of 
interest. The size of tumors were incremented starting 
from 0.003 m to 0.015 m radius at a step size of 0.001 m, 
whereas, the locations of tumor of each size are varied 
between  (0,0), (0.02,0), (0.04,0), (0,0.02), (0.02, 0.02), 
(0.04, 0.02), (0, 0.04), and (0.02, 0.04) coordinates. The 
smallest size of breast tumor chosen in this study is 
extremely small as the actual stage 1 breast tumor sizes are 
of 0.01 m radius or lesser [44]. The RES and MAG error 
metrics show almost consistent results with respect to 
different tumor sizes. However, it can be noticed that 
whenever the tumor is shifted to the central line (x=0 m), 
the values are significantly higher (more than 1), which is 
followed by tumors located away from the central line 
towards the sensor coils. This is proven in the previous 
Figure-7 (a), where the area of the reconstructed center 
tumor is the largest and highly enlarged when compared to 
the actual simulated tumor size.  

As the sizes of tumors are increased, the values of 
the MAG metric decreases and the RES metric become 
smaller and more uniform. On the contrary, PE values are 
the least for tumor at (0, 0), although pushed away from 
the centroid of ROI (negative value). PE values at 
midline(x=0 m and different y values) is smaller than of 

tumor images located towards the far ends of the breast. 
The average errors for all of the images are 
0.004728±0.007312, 13.7793±32.7322, and 
45.1929±42.1299 for the RES, MAG and PE error metrics, 
respectively. Meanwhile, the average error metric values 
for images of tumor located at the origin (0, 0) show better 
results in terms of PE, that is -2.5356±4.5750. The trend of 
all of the error metrics discussed is similar to the ones 
reported in [23]. 
 

 
 

Figure-8. Error metrics plot for 16 channeled MIT. 



                                    VOL. 11, NO. 23, DECEMBER 2016                                                                                                     ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                             13576 

Preliminary analysis: relationship between breast 
tumor size and MIT sensor IV readings 

This part of the paper discusses the results 
obtained from the analysis conducted to statistically 
correlate the relationship between the different breast 
tumor sizes and the corresponding IV readings. By doing 
so, we are able to predictively validate [33], [39]-[40] the 
response of the numerical MIT model system. The method 
used for the purpose was non-linear regression modeling, 
which is also described in terms of ANOVA test results. 
The sensor IV data for the analysis was taken from the 
simulations of 15 different sizes of tumor, each at eight 
different locations, that leads to a total of 240 simulation 
cases. The maximum sensor reading (out of 240 readings) 
for the reconstruction of each image is taken and averaged 
for 8 different locations. This eventually produces only 15 
values which correspond to the total number of tumor 
sizes being studied.  

Figure-9 shows that the adjusted R square is 
0.998 which indicates that the data fitted are very close to 
the regression line.  Apart from that, the ANOVA analysis 
also shows a favorable result to the regression model 
where the F value is more than one (2079.990) and p-value 
is less than 0.05 (0.00).  
 

Model summary 

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

.999 .998 .998 .016 

 

ANOVA 

 
Sum of 
Squares 

df 
Mean 
Square 

F Sig. 

Regression 1.640 3 .547 2079.990 .000

Residual .003 11 .000   

Total 1.643 14    

 

Coefficients 

 
Unstandardized 

Coefficients 
Standardized 
Coefficients

 

 B 
Std. 

Error 
Beta t Sig.

Tumor_ 
Radius 

-34.17 11.52 -.45 -2.97 .01

Tumor_ 
Radius ** 

2 
-4210.84 1645.01 -.91 -2.56 .03

Tumor_ 
Radius ** 

3 
112057.66 67730.72 .36 1.65 .13

(Constant) 9.043 .02  411.29 .00

 

 
 

Figure-9. SPSS report on cubic regression modeling. 
 

The coefficients table shows the estimated 
coefficients of the equation of cubic curve fit line that 
relates the tumor size (radius) with the IV readings. This 
equation will be useful in predicting the unknown size of a 
breast tumor. The plot of the cubic fit and actual 
(observed) IV readings based on the tumor size is also 
shown. 

Despite all the above findings showing relatively 
good agreement with the theory of magnetic induction, 
further hardware based measurements should be taken to 
validate the simulation results prior to planning the 
manifestations of the method on human breast cancer 
patients.  This is because the simplified 2D version of the 
human breast and assumptions made on the numerical 
model could result in deviations to a certain extent. In 
order to address these issues, further studies will be 
focused on creating a more realistic 3D MIT system as 
well as human breast, although experimental validation of 
the finite element simulation results is the primary 
objective. 
 
CONCLUSIONS 

This work describes a 2D MIT system with 16 
sensor coils for the detection and localization of tumors in 
the heterogeneous breast tissue. Upon completing the 
simulation experiments, images of the simulation results 
were reconstructed using LBP and later were subjected to 
three different types of error metrics assessment, which are 
of GREIT standard. Based on the results obtained, it can 
be concluded that the proposed system can effectively 
image a breast tumor, which has not been reported in the 
literature to date. The contactless environment with the 
breast is the primary nature of the proposed system that 
made it outperform other upcoming techniques like 
microwave and EIT techniques. This nature would prevent 
physical trauma on the patients in the near future; also, it 
can reduce the unnecessary cost of operation on the 
shielding material that is to be placed between the patient 
and the system.  
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