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ABSTRACT 

In this work, we determine the analytical expression of the form factor for a parallelepiped in the WKB 

approximation. We will focus, in this paper, to the study for the scattering of an incident ray in the perpendicular plane to 

the particle. Adapting some variables (size parameter, refractive index, the scattering angle) the other approximations such 

as the Rayleigh-Gans-Debye (RGD) and anomalous diffraction (AD) are easily deduced from our general formula. 

Furthermore, the closed form expression of the efficiency coefficient of the extinction is also given. For illustration, some 

numerical examples are be analyzed. 
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1. INTRODUCTION 

Studies on the scattering of light by small 

particles have a long and interesting history in physics. 

Nevertheless, they still bear new ideas and applications. 

But there are many potential future applications, 

particularly, in optical devices and technologies of solar 

energy [1-2]. Based on electromagnetic theory, Mie 

theory, published in 1908, gives a rigorous solution to the 

spread of a monochromatic plane wave by a spherical 

particle [3], the extension to other forms of particles are 

less than ideal proved to be a difficult problem.  As these 

systems are of great interest in many scientific disciplines 

such as astronomy and chemistry. There are two general 

approaches available: 

- numerical techniques : the invariant  embedding T-

matrix approach,  the digitized Green's-function method 

(DFG) and an improved version of the extended boundary 

condition method (EBCM). [4-5-6] 

- The use of approximate analytical methods: Rayleigh-

Gans-Debye (RGD), anomalous diffraction (AD)  that are 

generally valid for a number of situations. 

Amongst these analytical methods, the WKB 

technique, this technique introduced by Rayleigh in 1912 

for the solution of wave propagation problems [7], was 

first applied to quantum mechanics by Jeffreys in 1923 

[8], such applications continue up to the present day. 

Saxon applied the WKB approximation for the scattering 

of electromagnetic waves by a dielectric sphere [9]. 

Deirmendjian in 1959 introduced this method for the 

calculation of the light scattering by spheres and proved its 

interest [10]. 

In the WKB approximation, the internal field is 

equal to the incident field modulated by a phase delay 

factor which corresponds to an additional phase shift of 

the wave that propagates inside the particle. Therefore, the 

WKB approximation is a refinement of the RGD 

approximation [11]. 

Because of the complexity of the general 

scattering theory for nonspherical particles, the possibility 

of applying the WKB approximation to modeling the 

scattering of light by parallelepiped objects is worth 

investigating. This approach is applied on spheres, 

cylinders and spheroids [12-13-14]. 

This work is devoted to a theoretical study of 

scattering of light by parallelepiped, regular for 

dimensions a×a×l, in the WKB approximation. Within the 

framework of the scattering theory, we investigate the 

form factor for this approximation. The content of the 

article is the following. The second section introduces the 

principles of the WKB approximation for the calculation 

of form factor of particles. In the third section, we derive a 

general analytical expression for the form factor 

expression for a parallelepiped. In the fourth section, by 

varying some particle parameters, the RGD and the AD 

are deduced from our general formula. In the last section 

we give an analytical expression of the extinction 

coefficient. By using this formalism, numerical 

calculations are been performed to illustrate the 

comportment of the scattered light form factor. 

 

2. FORM FACTOR 

In the literature, the expression of the amplitude 

of light scattering in the WKB approximation, in a scalar 

form, is [12-13]:  

 |fሺo⃗ , i ሻ| = ୩2ଶ஠ sinℵ |ሺm − ͳሻF ሺθ, φሻ|,                              (1)                      

 

where o⃗  and i  are the unit vectors along the directions of 

scattering and propagation of light, respectively.  is the 

angle between the polarization vector  ex⃗⃗  ⃗ and the unit 

vector o⃗ ,  is the scattering angle between o⃗  and i ,   is the 

azimuthally angle,  is the wave vector and  is the 

relative complex refractive index. The quantity F ሺθ, φሻ is 

known as the form factor which represents the 

modification of the scattered irradiance due to the finite 

size of the particle and to its deviation from sphericity. 
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Fሺθ, φሻ = ∭ exp(ikr ሺi − o⃗ ሻ) ϑ expሺikWሻdϑ  .                

(2)  

 

Wehre , r   is the position vector of any point 

within the scattering object,    

and 

 W = ∫ [mሺZ′ ሻ − ͳ]dZ′ ୞୞e = ሺm − ͳሻሺZ − Zୣሻ  .             (3) 

  

 is the optical path for homogenous particle which is  

introduced by the scattering object,  is the Z-coordinate 

of the scatter element inside the particle and Zୣ is the z-

coordinate of the initial position of penetration of the 

object (see Figure-1).                 

We consider the Cartesian coordinate system 

orthonormal ɌሺX′, Y′, Z′ሻ, the origin coincides with the 

center of regular parallelepiped which is  illuminated with 

a flat monochromatic wave of wave number , polarized 

in the direction ex⃗⃗  ⃗. We assume that an electromagnetic 

wave is incident in the plane Y′OZ′ at an angle  to the Z′ − axis (see Figure-1(a)).  

 

 
 

 

 

Figure-1. Decomposition of the parallelepiped. 

 

In rectangular coordinates the form factor can be written as  

 F ሺθ, φሻ = ∭ exp[ik ሺ−xsinθcosφ − ysinθsinφሻ]exp[ikሺm − cosθሻz]exp[−ikሺm − ͳሻzୣሺyሻ] ϑ dϑ .                                (4) 

 

After some algebraic manipulations, the form 

factor can be expressed in a simple form, 

   F ሺθ,φሻ = Aሺθ,φሻ∫ ampl (zୣሺyሻ, zୱሺyሻ)expଢ଼N −ଢ଼N [−ikysinθsinφ]dy,(5a)                            

 

where, 

 

Aሺθ, φሻ = ୪୧୩ሺ୫−ୡ୭ୱ θሻ ୱ୧୬ ሺୢሻୢ  ,                                          (5b) 

 d = ୩୪ଶ sin θ cosφ ,                                                          (5c)   

                                                                                                       

and 
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ampl(zୣሺyሻ, zୱሺyሻ) =  exp[−ikሺʹm − ͳ − cosθሻzୣሺyሻ] − exp[ ikሺͳ − cosθሻzୱሺyሻ],                                                        
(5d)  

 

with  zୣሺyሻ , zୱሺyሻ are the z-coordinates of the intersection 

of the incident ray and the body surfaces, and  

 YN = aଶ cosሺαሻ + aଶ sinሺαሻ                                                 (6)  

 

From the symmetry of the particle, we can 

decompose the parallelepiped into three regions. Each 

region in turn is divided into longitudinal slices with 

thickness dy and width   ∆z୨ (see Figure-1). Therefore, the 

form factor can be written as: 

 F ሺθ, φሻ = Fଵሺθ, φሻ + Fଶሺθ, φሻ + Fଷሺθ, φሻ,                    (7) 

                                                      

where, 

 Fଵ ሺθ, φሻ = Aሺθ, φሻ ∫ ampl (zୣଵሺyሻ, zୱଵሺyሻ)exp−ଢ଼A −ଢ଼N [−ikysinθsinφ]dy,                                                                              
(8)  

 Fଶ ሺθ, φሻ = Aሺθ, φሻ ∫ ampl (zୣଶሺyሻ, zୱଶሺyሻ)expଢ଼A −ଢ଼A [−ikysinθsinφ]dy,                                                                              (9) 

 Fଷ ሺθ, φሻ = Aሺθ, φሻ ∫ ampl (zୣଷሺyሻ, zୱଷሺyሻ)expଢ଼N ଢ଼A [−ikysinθsinφ]dy,                                                                             (10)    

 

with 

 YA = aଶ cosሺαሻ − aଶ sin ሺαሻ,                                             (11) 

 

and zୣ ୧ሺyሻ , zୱ ୧ሺyሻ (with  i = ͳ, ʹ, ͵ሻ  are the z-coordinates 

of the intersection of the incident ray and the body 

surfaces for each region. 

Finally, one obtains 

  Fଵሺθ,φሻ = −i a2୪ ୲a୬αଶ ୳ ୱ୧୬ୢୢ exp [−iሺʹqsinα − ʹtሻ ଢ଼Aa ] [Iଵ  −  Jଵ],           (12) 

 Fଶሺθ, φሻ = ʹ a ୪ଢ଼Aୡ୭ୱα ୱ୧୬ୢୢ ୱ୧୬୳୳   ୱ୧୬ ቆሺଶ୯ ୱ୧ ୬α  −ଶ୲ሻYAa ቇሺଶ୯ ୱ୧ ୬α  −ଶ୲ሻYAa e୧ρ2 ,       (13) 

 

and 

 Fଷሺθ, φሻ = i a2୪ ୲a୬αଶ୳ ୱ୧୬ୢୢ exp [iሺʹqsinα − ʹtሻ ଢ଼Aa ] [Iଷ  −  Jଷ],   (14) 

                               

where  Iଵ , Jଵ , Iଷ and Jଷare given by 

 Iଵ = e୧g [ୣx୮[−ଶ୧(୯ୱ୧୬2α+୳−୲ ୱ୧ ୬α)]−ଵ−ଶ୧ሺ୯ୱ୧୬2α+୳−୲ ୱ୧ ୬αሻ ] ,                            (15) 

 

 Jଵ = e୧୯ [ୣx୮[−ଶ୧ሺ୯ୱ୧୬2α−୲ ୱ୧ ୬ αሻ]−ଵ−ଶ୧ሺ୯ୱ୧୬2α−୲ ୱ୧ ୬αሻ ],                                (16)  

                        Iଷ = e୧g [ୣx୮[−ଶ୧(୯ୡ୭ୱ2α+୳+୲ ୱ୧ ୬α)]−ଵ−ଶ୧ሺ୯ୡ୭ୱ2α+୳+୲ ୱ୧ ୬ αሻ ] ,                            (17)  

  

Jଷ = e୧୯ [ୣx୮[−ଶ୧ሺ୯ୡ୭ୱ2α+୲ ୱ୧ ୬αሻ]−ଵ−ଶ୧ሺ୯ୡ୭ୱ2α+୲ ୱ୧ ୬ αሻ ] .                               (18) 

 

With 

                                      ρ = ୩aୡ୭ୱ α ሺm − ͳሻ,                                                         (19)  

 u = ୩aଶୡ୭ୱα ሺm − cosθሻ,                                                   (20)   

 g = ஡ଶ + u ,                                                                      (21)   

                                                         q = ஡ଶ − u ,                                                                     (22) 

 

and  

 t = ୩aଶ sinθsinφ.                                                             (23)  

 

Therefore, F ሺθ, φሻ = Fଵሺθ, φሻ + Fଶሺθ, φሻ +Fଷሺθ, φሻ is a closed-form of the form factor for a 

parallelepiped (or cubic). This expression is valid for any 

value of the phase delay of the wave penetrating through 

the center of the homogenous absorbing parallelepiped.  

For illustration, we show in Figures 2-3 the behavior of the 

form factor as a function of the scattering angle , for two 

special cases (
୪a = Ͳ.ʹ; parallelepiped plat and 

୪a  = ʹ; 

parallelepiped column). These Figures show that the form 

factor exhibits some lobes with intensity decreasing with 

scattering angle. 
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Figure-2. Normalized form factor as a function of    scattering angle  for absorbing parallelepiped, for two 

values of the parameter  ka. with  
୪a = ʹ , m = ͳ.ͳ5 + Ͳ.Ͳͳi  , α = ͵Ͳ°. 

 

  
Figure-3. Normalized form factor as a function of scattering angle  for absorbing parallelepiped, for two 

values of the parameter  ka. with  
୪a = Ͳ.ʹ , m = ͳ.ͳ5 + Ͳ.Ͳͳi  , α = ͵Ͳ° . 

 

3. SPECIAL CASES 

 

3.1 RGD approximation 

In the limit of a small refractive index, the WKB 

approximation reduces to RGD approximation for 

scattering from parallelepiped. For this approximation, we 

assume that ρ ا ͳ. Which implies that the imaginary part 

of the form factor is vanishes. In this case the expression 

of the form factor reduced to.  

 F ሺθ, φሻ = aଶl ୱ୧୬ୢୢ [ 2YAaୡ୭ୱα  ୱ୧୬୳୳  ୱ୧୬ቆሺଶ୳ ୱ୧୬α+ଶ୲ሻYAa ቇ ሺଶ୳ ୱ୧୬α+ଶ୲ሻYAa ୲a୬α୳ ቌsinሺu + ሺusinα + tሻcosαሻ ୱ୧୬(୳ୱ୧୬2α+୲ୱ୧୬α)୳ୱ୧୬2α+୲ୱ୧୬α+ sin ሺሺusinα + tሻcosαሻ ୱ୧୬ ሺ୳ୡ୭ୱ2α−୲ୱ୧୬αሻ୳ୡ୭ୱ2α−୲ୱ୧୬α ቍ].                                (24) 

 

To illustrate our analytical result, we represent in 

Figure-4 the behavior of the normalized form factor as a 

function of the scattering angle  in the case of a non 

absorbing parallelepiped. The parameters used in the 

calculation are: 
୪a = ʹ, m=1.01 and angle α = ͵Ͳ° for 3 

values of . 
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Figure-4. Normalized form factor as a function of scattering angle  for nonabsorbing parallelepiped, 

for two values of the parameter ka. 

 

3.2 Anomalous diffraction 

This approximation, called anomalous diffraction, 

is characterized by low refractive index, in this case, the 

light passing through the particle (transmitted without 

reflection) interferes with diffracted light, producing a so-

called anomalous diffraction. 

Such an approximation is valid if X = ka ب ͳ ,  

size parameter, and  |m − ͳ| ا ͳ . This implies that the 

rays are not deviated when they cross the interface 

particle-medium and that the reflection at this interface is 

negligible. We consider in this case intermediary values of 

 and an angle  θ ا ͳ , so 

d = ୩୪ଶ θcosφ,                                                                 (25) 

 

  t = ୩aଶ θsinφ,                                                                (26) 

 u + ஡ ଶ ≈  ρ  ,                                                                  (27) 

 

 and  

 u  − ஡ ଶ ≈ Ͳ .                                                                   (28) 

 

The expression of the form factor is reduced to 

 

F ሺθ, φሻ = −iaଶl ୱ୧୬ୢୢ [  
  tanα ቆୱ୧୬ቀ஡ ଶ⁄ +୲ୱ୧୬αቁ஡ ଶ⁄ +୲ୱ୧୬α e−୧୲ୡ୭ୱα + ୱ୧୬ቀ஡ ଶ⁄ −୲ୱ୧୬αቁ஡ ଶ⁄ −୲ୱ୧୬α e୧୲ୡ୭ୱαቇ ୣiρ 2⁄஡−ʹtanα ୱ୧୬ ሺ୲ୱ୧୬αሻ୲ୱ୧୬α ୡ୭ୱሺ୲ୡ୭ୱαሻ஡ + i 2YAaୡ୭ୱα ୱ୧୬ ሺ஡ ଶ⁄ ሻ஡ ଶ⁄ ୱ୧୬ ሺ2YAa ୲ሻ2YAa ୲ e୧஡ ଶ⁄ ]  

  
.                                                               (29)  

 

We present in Figure-5, the normalized form 

factor as a function of the scattering angle   for three 

values of . We respect the conditions imposed on the 

scattering angle, size parameter and refractive index of the 

scattering object with m = ͳ.ͳ + O. Oͳi, ୪a = ʹ,and angle α = ͵Ͳ° for two values of the parameter ka. 
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Figure-5. Normalized form factor as a function of scattering angle  for parallelepiped, for 3 values of . 

 

4. EXTINCTION COEFFICIENT 

The efficiency factor of extinction is connected to 

the cross section of extinction by [3] 

 Qୣx୲ = σextP  ,                                                                   (30) 

 

where  is the projected air given by the parallelepiped , 

and σୣx୲ is the cross section of extinction [15] 

 σୣx୲ = ସ஠K Im{|fሺi , i ሻ|.                                                     (31) 

 

where |fሺi , i ሻ| given by Eq.(1) and Im is the imaginary 

part. Finally, the efficiency coefficient is expressed as: 

 Qୣx୲ = ଶ୩P  Imሺ|ሺm − ͳሻFሺͲ,Ͳሻ|ሻ.                                   (32) 

 

The projected air is 

 P = al ሺsinα + cosαሻ.                                                   (33)  

 

The expression of the efficiency coefficient of 

extinction is reduced to 

 Qୣx୲ = Re( −ଶ୲a୬α+ଵ ቆሺe୧஡ − ͳሻ ቀͳ − tanα + ଶ୲a୬α୧஡ ቁ − ʹtanαቇ).       (34) 

 

The efficiency coefficient of extinction of 

parallelepiped, under incidence perpendicular to the 

particle, for a given angle α, is independent of the height . 

In the following, we give as example, the 

analytical expression of the efficiency coefficient for real 

refractive indices in two specials cases of the incidence. 

 

 α = Ͳ, we find  Qୣx୲ = ʹ − ʹcosρ.                         (35)  

 α = πସ , we find  Qୣx୲ = ʹ − ʹ ୱ୧୬ρ
ρ

 .                         (36)  

These two last expressions can be verified by 

using this method for normally incidence.   

In Figure-6, we represent the behavior of the 

efficiency factor of the extinction Qୣx୲versus X = ka, for 3 

values of angle . Note that, after some oscillations, this 

coefficient tends to the value 2 for large quantities of ka. 
 

 
 

Figure-6. The extinction efficiency factor Qୣx୲as a 

function of size parameterX = ka, for m = ͳ.ʹ + Ͳ.Ͳʹi. 
 

5. CONCLUSIONS 

In this paper, we have shown the possibility of 

applying the WKB approximation for nonspherical 

particle for horizontally incidence. For this, we have 

determined the analytical expression of the forme factor 

for homogenous parallelepiped. We have applied this 

formula without restricting conditions. The other 

approximations covered by the WKB approach, such as 

the Rayleigh–Gans–Debye approximation (RGD) and, the 

anomalous diffraction (AD) are deduced easily from our 

analytic formula. Furthermore an analytical expression of 

the extinction efficiency factor is also given. Our goals are 

to shown that the WKB approximation can be extended to 

a large number of different shapes as needed is specific 

problems and to give an analytical formulation of this 

method for arbitrarily oriented particles. To illustrate the 
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comportment of the scattered light form factor, some 

practical illustrations are analyzed. 
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