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ABSTRACT 

Biogeography-based optimization (BBO) has recently become popular in unmanned aerial vehicle (UAV) path 

planning. Similar to other evolutionary algorithms, the performance of BBO is affected when the parameter setting is not 

finely tuned. Therefore, the BBO parameters are optimized in this research particularly for application in UAV path 

planning. Each combination setting of parameters is simulated 100 times to obtain the average performance. The optimum 

population size and mutation rate of BBO settings for UAV path planning are also proposed.   
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1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) have attracted 

considerable research attention mainly because of their 

low cost and no-man-on-board feature. Therefore, UAVs 

have become ideal for dangerous missions, particularly in 

military operations. These vehicles can also be used for 

surveillance, video monitoring, surveying, and 

reconnaissance [1]. As a result, fully autonomous flight 

has become the target for UAV development. Path 

planning optimization is an important factor in which 

various evolutionary algorithms have been implemented 

and studied to improve the autonomous flight of UAVs [2, 

3].   

Path planning creates a pre-arranged flight path 

for UAVs before or during their flight. Path planning is 

classified into global and local path planning [4]. Global 

path planning is an offline planning system that often uses 

terrain map information without receiving data from 

sensors when generating a flight path. By contrast, local 

path planning is an online planning system that may or 

may not use terrain map information and receive data from 

sensors when generating a flight path within the sensor 

coverage.  

Introduced by Simon [5] in 2008, biogeography-

based optimization (BBO) mimics the distribution of 

living organisms across islands through time and space [6-

8]. Island with better environments are filled with more 

living organisms. These organisms migrate to other places 

when their present location has insufficient space. This 

concept has been widely practiced in various applications, 

including aircraft path planning. Similar to other 

evolutionary algorithms (EAs), BBO requires the input of 

several parameters, such as population size and mutation 

rate.  

Population sizing has always been an issue in the 

application of EAs. People optimize the influence of 

population either by proposing different initialization 

methods or making population size to be dynamic to 

achieve maximum EA performance [9-11]. However, 

these methods increase the computational cost of applying 

EAs and require considerable time to be tuned for different 

applications. 

Moreover, the optimum mutation rate for BBO 

for aircraft path planning has never been investigated. This 

study aims to optimize the population size and mutation 

rate for BBO when applied in UAV path planning. The 

values of population size and mutation rate are varied to 

identify their optimum values. A hundred simulations are 

performed for each combination of these two parameters 

to obtain the average performance of BBO for aircraft path 

planning. 

 

2. METHODOLOGY 

Figure-1 shows a 100×100 grid terrain map of 

our case study area. To increase the search speed, the 

altitude for each waypoint is set as a certain height from 

the ground at the waypoint coordinate. The virtual y-axis 

will be used when creating or varying a waypoint location 

to facilitate and increase the path planning efficiency. A 

large number of waypoints is set to make the problem 

more complicated and to identify easily the influence of 

the value of parameters.  

The maximum generation number is set to 1000. 

The studied mutation rate ranges between 0% and 100% 

with an interval of 10%. The value of population size is 

iterated from 10 to 100 with an interval of 10. The initial 

and final locations of the flight path are set as {10, 90} and 

{90, 10}, respectively, to utilize the entire search space. 

Figure-2 shows the terrain map of the case study area. 
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Figure-1. UAV 3DPath planning. 

 

 
 

Figure-2. Map. 

 

The length of flight path is used as the function of 

this study. The UAV will not hit the ground because we 

set the altitude of UAV high enough from the ground at 

each waypoint. The minimum turning radius is not 

restricted. The user may also include additional factors in 

cost evaluation when applying BBO in actual UAV 

applications with the same optimized settings that are 

applied in this study.   

A BBO algorithm usually begins with the 

initiation of a population with random solutions. All 

solutions are then evaluated in terms of cost, and low cost 

solutions are treated as better habitat islands. Better 

habitats have more living organisms that are prone to 

migrate to other areas because of saturation. Therefore, 

these solutions will have a higher probability of replacing 

the particles of high cost solutions. The immigration (Ȝ) 
and emigration rates (ȝ) are estimated as follows [12]μ 
�ߣ  = �ሺ1 − � �⁄ ሻ,                                   (1) 

�ߤ  = �ሺ� �⁄ ሻ ሻ,                                   (2) 

where � and � are the maximum immigration and 

emigration rates, � is the number of species, and � is the 

maximum amount of species in a habitat. The number of 

species in each solution is calculated on the basis of 

thecost ranking of the solution. We assume  � = � and 

combine equations 1 and 2as follows: 

�ߣ  + �ߤ = 1.                                                (3) 

 

After the migration process, a certain number of 

particles from the population will be involved in a random 

mutation and several lowest cost solutions will be 

preserved at the end of the generation. The same number 

of highest cost solutions will be replaced by the lowest 

cost solutions from the previous generation, and the 

algorithm will continue its migration in the new 

generation.   

 

3. RESULTS AND DISCUSSIONS 

Figures 3 and 4 show the average path and 

computational cost at 1000
th
 generation in BBO with 

various combinations of population size and mutation rate. 

A high average path cost is observed when the mutation 

rate is 0%.This cost significantly decreases when the 

mutation rate is increased to 10%.Nevertheless, increasing 

the mutation rate will only decrease the BBO performance. 

Therefore, a 10% mutation rate has the lowest average 

path cost, as shown in Figure-3.  

Increasing the population size can decrease the 

path cost further, as shown in Figure-3. Figure-4 shows 

that increasing the population size will increase the 

computational cost and will have an influence is larger 

than that of an increasing mutation rate. Figures 5 and 6 

show the average path and computational costs of BBO 

with various population sizes from 100 to 1000 

generations at a 10% mutation rate. A higher population 

size yields a smaller average path cost and a bigger 

computational cost and vice versa.  

 

 
 

Figure-3. Average path cost at 1000
th

 generation. 
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Figure-4. Average computational cost at 1000
th

 

generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure-5. Average path cost at 10% mutation. 

 

 
 

Figure-6. Average computational cost at 10% mutation. 

 

To estimate the balanced point of population size, 

the influence of population size on both average path and 

computational costs with a benchmark population size of 

100 is plotted in Figures 7 and 8, respectively. Figure- 7 

shows that the influence of population size on average 

path cost tends to increase along with the generation 

number. Nevertheless, increasing the population size does 

not have the same effect of reducing the path cost.
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Figure-7. Increase in path cost using a population size of 100 as reference. 

 

 
 

Figure-8. Increase in computational cost using a population size of 100 as reference. 

 

The reduction rate of computational cost remains 

consistent among various population sizes. Nevertheless, 

the actual computational cost increases along with 

population size and generation number. Therefore, the 

optimum population size in BBO can estimated as 40 

because the average path cost is 4% to 6% higher and the 

computational cost is 62% lower than the population size 

of 100.    

 

4. CONCLUSIONS 

On the basis of the analysis results, the optimum 

population size for BBO in UAV path planning can be 

estimated as 40 after considering both the average path 

and computational costs. BBO without a mutation rate will 

lead to a high average path cost, and increasing the 

mutation rate will lower the success rate for improving 

solutions. Therefore, an optimum of 10% mutation rate is 

obtained.  
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