
 VOL. 11, NO. 23, DECEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13996

GENERATING AUTOMATIC CERTIFYING REFACTORED ENGINE
FOR SOFTWARE LEGACY SYSTEM

M. Srinivas1, G. Rama Krishna1 and K. Rajasekhara Rao2

1Department of Computer Science Engineering, KLEF, K L University, AP, India
2Sri Prakash College of Engineering, AP, India

E-Mail: srinu_cse@kluniversity.in

ABSTRACT

Refactoring or Platform migration is a process of improving the underlying design and architecture of legacy
systems that subsequently can improve their performance and maintainability. Many of the legacy technologies are no
longer supported, hence the need for migration. However, the refactoring tools are not correct in every possible cases and
programmers cannot trust them. One has to make sure that the functionality of the legacy system remains intact after going
through the process of migration. Hence there is a need to build certified refactoring tools which were useful for industrial
developments. In this paper, we will address the complete automated certification mechanism which certifies all the
functional components of a service or application and various process involved during the certification phase. We are
particularly interested in complex program transformation based on a sequence of refactoring operations provided by
eclipse tools.

Keywords: legacy systems, refactored services, migration, certification, eclipse, bugs.

1. INTRODUCTION

In software engineering, series of evolutions
downgrade the quality of code [8,9]. Indeed, each
modification gets harder to implement. This eventually
requires fixing or changing the structure of the program,
without changing its behaviour, in order to ease future
evolutions [10, 11]. Such architecture modifications are
integrated in agile development processes. Unfortunately,
tools that change the structure of programs without
modifying their behaviour (i.e., refactoring tools) are
generally not correct [12]. Indeed, refactoring tools may
change the behaviour of the program and so their use
requires systematic and extensive testing in order to detect
the newly introduced bugs. This is the reason why users do
not trust these tools and tend to prefer manual
modifications [13, 14]. This paper addresses the
correctness of refactoring tools. Since the grammars of
various programming are rich, numerous cases must be
taken into account in the design of such tools, which
makes the task difficult. Moreover, refactoring operations
should preserve as much as possible the layout of the
source code as well as its comments and its pre-processing
directives (macros, pragma, etc.). In addition to a difficult
design, the implementation or a refactoring tool is critical.
So a theoretical study of a transformation is not sufficient
to ensure the quality of the final tool. For this reason, a
correct-by-construction approach should work well here.
Up to now, this could not be applied to industrial strength.
Also, Programming languages are lack of formal
semantics, existing formalizations are restricted to a subset
of the languages. This proposed work devotes to prove the
correctness of refactoring tools which provides powerful
mechanisms for automated reasoningand certified code
generation. The contributions of this paper are- An
extension of the verification of refactoring’s to produce
verified code; A discussion of patterns of refactoring that
are applicable to the verified code itself; Although we
restrict our focus to refactoring’s, these steps may be

followed to produce various other kinds of certified
software.

2. RELATED WORK

The intention to build refactoring tools from the
verification of refactoring was also expressed in earlier
work. A larger development is described by Blazy et al.
[19] and Leroy [18], in which a compiler is certified - its
frontend compiles a fragment of C into an intermediate
language called Cminor, and the backend completes the
compilation into PowerPC’s assembly language. Okuma
and Minamide [17] use Isabelle/HOL to specify and verify
a compiler, of which code is then generated and embedded
into a larger system that compiles a small functional
language into Java bytecode. Garrido & Meseguer [15]
and Junior et al. [16], using the systems Maude and
CafeOBJ respectively. Using interactive theorem provers
to build certified programming tools has been attempted
for different tools and using different systems. Tourw´e
and Mens described three phases of refactoring [20]:
perceiving when the refactoring should be applied,
identifying which methodology to apply, and finally
carrying out the refactoring process. The steps in this
simpler model correspond to the Identify, Initiate, and
Execute respectively. Demeyer [21] shows that refactoring
can have a valuable influence on software performance
(e.g. compilers can optimize better on polymorphism than
on simple if else statements). Bois and Mens [22] develop
a framework for investigating the effects of refactoring on
internal quality metrics, but again, they have not provided
an experimental substantiation in an industrial
environment. Stroggylos et al. [7] evaluated source code
version control system logs of popular open source
software systems to detect changes marked as
refactoring’s and examined how the software metrics are
affected by this process. DuBois et al. studied the impact
of refactoring on cohesion and coupling metrics in [4] and
identified the benefits that can follow, and defined the

 VOL. 11, NO. 23, DECEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13997

application of refactoring could improve selected quality
characteristics [5]. Fontana et al. studied the effect of
refactoring applied to reduce code smells on the quality
assessment of the system [6]. Kataoka and colleagues’
introduced a 3-step model [3]: identification of refactoring
candidates, validation of refactoring effect, and application
of refactoring. This corresponds to the Identify, Interpret
Results, and Execute steps respectively. Vakilian et al.
proposed a compositional model for refactoring (automate
individual steps and let programmers manually compose
the steps into a complex change) and implemented a tool
to support it. Henkel et al. implemented a framework
which captures and replays refactoring actions.

3. IMPORTANCE OF LEGACY SYSTEM

In IT Organizations, the term legacy system
relates to being a previous or outdated computer system.
At times it might likewise have little to do with the age of
the framework also. The legacy framework could
conceivably be being used. For variety of reasons, a legacy
framework might keep on being utilized. The choice to
keep the legacy framework may be impacted by monetary
reasons like, rate of profitability or merchant lock-in.
Some of the most common scenarios that forced the IT
organizations for keeping the legacy system include

 The system works satisfactorily, and the owner sees

no reason to change it.

 The expenses of renovating or replacing the Legacy
systems are restrictive in light of the fact that it is
vast, solid, and/or complex.

 Retraining on another framework would be excessive
in lost time and money, contrasted with the expected
advantages of replacing it (which may be zero).

 The system requires consistent accessibility, so it can't
be taken out of administration, and the expense of
planning new system with a comparative accessibility
level is high.

 The way that System works is not surely knew. Such
a circumstance can happen when the Designers of the
system have left the association and the system has
either not been completely documented or
documentation has been lost

 The user expects that the system can easily be
replaced when this becomes necessary.

Even though we discussed many reasons to keep
the legacy system, there is a definite need to migrate the

legacy system (Refactoring). Some of them are legacy
technology is no longer supported, Legacy application
performance issues, When a merger happens between two
large IT organizations, Funding available to migrate the
legacy system.

4. OVERVIEW OF REFACTORING THE LEGACY
SYSTEM

Refactoring is that the method of improving the
inner structure of the code in such how that’s doesn't alter
the external behaviour of the system [1, 2]. Over the last
two decades, many business organizations had noticed that
a generous amount of non-trivial legacy software
frameworks fail due to unstructured architectural design.
Moreover, Research suggests that refactoring is considered
a best-method for managing the software system. Indeed,
programmers practice regularly with refactoring tools in
two different occasions- normal program development
phase, whenever and wherever design problems arise.
Another is at the time of code duplication, when adding a
feature, then the programmer need to remove that
duplication using re-factor tool. In addition the key
advantages of refactoring are- making software easier to
understand, to find defects, improves the design of
software, and helps user to program faster. Based on level
of automation, refactoring can be categorized into three
categories-Fully manual refactoring, Semi-automatic
refactoring and automatic refactoring. However, fully
manual refactoring and Semi-automatic refactoring tools
are underused, because these two refactoring technique
sometimes fails to recognize the legacy code and chasing
the error messages that leads to more error-prone.

Once there is a necessity to migrate the legacy
system into the state of the art web services (Service
Oriented Architecture (SOA)) which is the driving factor
of migration and web services. We have to make sure that
the actual functionality of the legacy system is intact,
which we call it as certification. This process of
certification involves a lot of manual QA (Quality
Assurance) effort, leading to increase in cost and time
involved in the whole migration and certification process.
The usual Quality Assurance process goes through
preparation of functional test cases based on the functional
requirement documents (FRD) and inputs from subject
matter experts (SME). As we are speaking about legacy
systems which are developed years back, we cannot expect
all the functional requirement documents to be available
keeping track of all the change requests made to the legacy
system. Also, it is very difficult to find the subject matter
experts as they may not be still with the organization. This
enforces us to think about automating the whole process of
certification without the need for functional requirement
documents or knowledge from a subject matter expert.

 VOL. 11, NO. 23, DECEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13998

Figure-1. GAFactor refactoring process.

5. GENERATING THE AUTOMATIC
REFACTORING (GAFACTOR) TOOL

We designed a novel refactoring tool called
GAFactor. This GAFactor system detects a developer’s
legacy code, reminds to the programmer that the automatic
refactoring is available and if the programmer accepts then
GAFactor complete the refactoring automatically.
GAFactor will overcome the burden of underuse problem
that occurs in both manual and semi-automatic refactoring.
To use a GAFactor refactoring tool, a developer must
recognize that GAFactor tool is available and should select
the Network Barrier (switching key) to perform refactor
the legacy code. The advantage of using GAFactor
refactoring tool over manual refactoring- First, the
GAFactor automatically performs static analysis for
analyzing the flow of data of the code that saves the
programmer from doing error-prone work. Second, The
GAFactor is applicable for both application programmers
and developers. Third, The GAFactor keeps the 90% of
configuration defaults and will not be changed when
programmers use the tools until the application

programmers press the commit within the tool. This
proposed GAFactor Tool uses a component called Switch
which helps in toggling between legacy and refactored
systems in a convenient and effective manner providing
service certification and allowing the client to migrate
from legacy to refactored system. The main functionality
of this switch component is to migrate from legacy
systems to services and provides backward compatibility.
Moreover, if the developer wants to invoke or to undo the
entire legacy code that has already made then he can use
same switching as depicted in Figure-1. The network
barrier(Switch) components has several sub components
such as Router, Dashboard, Facade, Messenger,
Certification, Metrics, which helps in achieving different
functionalities of GAFactor as depicted in Figure-2.
Second sub-component is facade which provides
backward compatibility for legacy applications, whenever
there is a need to refactor the legacy systems to services,
there also definite need to provide backward compatibility
for existing legacy applications.

 VOL. 11, NO. 23, DECEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13999

Figure-2. Verifying a refactoring mechanism.

6. ARCHITECTURE FOR CERTIFYING
REFACTORED LEGACY SYSTEM:

This section describes architecture for certifying
refactored legacy system that shows extended work of
previous result for generating the correct code which we
had implemented the refactoring (GAFactor) described in
the previous section. The following sections elaborate on
each step of the certifying refactored process which
includes various components Certification Router,
Certification Engine, Certification Database, Rules
Engine, Certification Dashboard as shown in the Figure-3
Let us discuss about these various components in detail.
Certification Router: Router component acts as a façade
between the consumer applications and the actual legacy
system. This component clones the actual request coming
from the consumer application and routes the actual
request to the legacy system and the cloned request to the
refactored system. It also stores the actual request in the
certification database which later will be used to perform
debugging.
Certification Engine: Once the request is sent to both
legacy and refactored system, they will hit the backend
service and gets the response from the backend service and

clones the response computed by each of the legacy and
refactored system and stores it in the certification
database. Then the legacy system will send the actual
response to the consumer application and refactored
system does nothing. Once the legacy system response and
the refactored system response is stored in the certification
database, the certification engine will pick them up, tie
them to the actual request and compares the responses. In
the process of comparison the certification engine talks to
the rules engine to check any particular rules are defined
for the service (We will talk about the rules sometime
later) and based on that will do the comparison and inserts
the results into certification database.
Certification Database: This will hold all the output data of
the certification engine, certification router and the
certification database. The sample Entity Relation
Diagram is illustrated in the Figure-
4.Certification_Route_Master contains all the information
about the routing details about legacy and refactored
systems. Caertification_results_master will have all the
certification results and also references request and
response masters of the legacy and the refactored
applications.

 VOL. 11, NO. 23, DECEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 14000

Figure-3. Architecture for automated certification mechanism.

Rules engine: Rules engine consists of all the possible
deviations of refactored system response from the legacy
system response. The possibilities include approved design
deviations during the migration phase, known bugs from
the legacy application, change requests implemented in the
refactored system, improved functionality of the refactored
system.

Approved design deviations are the design and
architectural changes that were made as part of the
migration process. It includes renaming the services,
change in the error handling framework, change in the
data model of the application to make it in line with the
data model of the organization, change in the way we
make backend service calls.

Known bugs from the legacy system are the bugs
or issues or defects that are identified as part of the
independent validation and versification process that will
be conducted during any migration phase of the
application. Verification and Validation are critical
components of a quality management system and are
independent procedures that are used together for checking
that a product, service, or system meets requirements and
specifications and that it fulfils its intended purpose. The
words "verification" and "validation" are sometimes
preceded with "Independent" (or IV&V), indicating that
the verification and validation is to be performed by a
disinterested third party. It is sometimes said that
validation can be expressed by the query "Are you
building the right thing?" and verification by "Are you
building it right?" In practice, the usage of these terms

varies. Sometimes they are even used interchangeably. IV
and V allows one to observe and record any errors or
inconsistencies in a computer program or system that
produces an incorrect or unexpected result, or causes it to
behave in unintended ways. Most bugs arise from mistakes
and errors made by people in either a program's source
code or its design, or in frameworks.

When the migration plan is on for the legacy
applications all the change requests that are planned for
the system functionality will not be made to the legacy
system, in turn they are made to the refactored system.
These changes requests are to be tracked and added to the
rules engine to let know the certification engine about the
change request planned for the refactored system.

Improved functionality of the refactored system
includes the changes made to the system keeping in mind
of the performance issues and other design and
implementation challenges encountered in the legacy
system. These changes are to be added to the rules engine
to let know the certification engine about the
improvements planned for the refactored system.
Certification dashboard: Certification Dashboard enables
the user to control the level of certification and to view the
certification results on the graphical user interface. It also
enables the user to get the reports based on services and
peak hour - non peak hour certifications. Figure-4 shows
sample snapshot of the service certification report. It also
allows the user to enable or disable certification by
providing a mapping between legacy and refactored
applications.

 VOL. 11, NO. 23, DECEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 14001

Figure-1. Certification report sample.

Figure-5.Various phases in enabling certification.

7. ENABLING CERTIFICATION

Enabling certification is definitely a costly
process in terms of increasing the load on the productions
servers. So, it is very important to control the certification
process to make it efficient in terms of quality as well as
performance. Various modes of certification include peak
hour certification, non-peak hour certification, full day
certification, legacy retirement. The first step would be
enabling non-peak hour certification. If there are no bugs
in non-peak hour certification then we should enable peak
hour certification. Once this phase is through we should
enable full day certification and eventually retire the
legacy application. Please refer Figure-5.

8. SCENARIO OF RESULTS AND CASE

Let us consider Internet Banking application that
is migrated to the web services. It may have a whole lot of

services. Let us consider three of noteworthy services are
mentioned.
a) Register payee: This service is to register new payee

for fund transfer by a customer

b) Link other accounts: Service is to facilitate the link
to other account to exiting user id.

c) Get transaction details: To provide details of
transactions made by the customer to customer
executive who tries to read the transaction details.

The response of the legacy and refactored
systems can be compared which results success, Failure,
bug, timeout, deviation, improvement or change request.
The possible types of results are summarized in the Table-
1. The issue tracker for various results is shown in Figure-
6.

 VOL. 11, NO. 23, DECEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 14002

Table-1. Types of possible results.

Type Description

Success Both the responses matched and there are no rules defined

Failure One of the Legacy or the Refactored system is down

Bug Response did not match even after applying the rules defined

Timeout One of the Legacy or the Refactored system received timeout from the backend service

Deviation Responses matched after applying the design deviations defined in rules engine

Improvement
Response matched after masking the fields that are marked as improvement in the rules

engine

Change Request
Response will not match as there will be more fields added to the refactored response as part

of change request. This has to be certified manually

Figure-6. Issue tracker.

The different bugs/inconsistencies /deviations are
given below.

Improvement: When the customer is trying to
add a new payee for funds transfer/to pay bills, and
submitting information about payee, there is a constraint
nick name of the payee must not exceed 10 characters. If
user inputs more than 10 characters and submits the
request for adding payee. The responses of legacy as well
as refactored system are recorded. Hence there is
improvement in system response. See the table below for
more details

Deviation: When the customer links his other
accounts to existing user Id a message “Account Linked

Successfully” is shown. But the data model is changed
between the legacy and refactored system. Hence there is a
deviation in the refactored system. See the table below for
more details

Bug: When customer executive tries to read
transactions made by customer with a transaction number
that is not updated in the backend system the legacy
system fails. This is categorized as Legacy Bug. This will
be fixed in the refactored system to show proper message.
See the table below for more details. The rules list is
summarized in Figure-7.

Figure-7. Internet banking application.

9. CONCLUSIONS

This paper addresses the complete automated
certification mechanism that certifies all the functional

components of a service or application and various process
involved during the certification phase. This mechanism
mainly saves the cost and time compared to the manual

 VOL. 11, NO. 23, DECEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 14003

Quality Assurance approach. Moreover, this mechanism
does not need any human intervention, will provide a
100% bug free certification which results in higher profits
to the organization.

REFERENCES

Srinivas Malladi, et al. 2016. GATALSS: A Generic
Automated Tool for Analysing the Legacy Software
Systems. Research Journal of Applied Sciences,
Engineering and Technology. 12(3): 361-365.

Srinivas M., et al. 2016. Analysis of Legacy System in
Software Application Development: A Comparative
Survey. International Journal of Electrical and Computer
Engineering (IJECE) 6(1).

Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji
Fukaya. 2002. A quantitative evaluation of maintainability
enhancement by refactoring. In ICSM ’02: Proceedings of
the International Conference on Software Maintenance,
pp. 576-585, Washington, DC, USA. IEEE Computer
Society.

Du Bois B. 2006. A Study of Quality Improvements by
Refactoring. Ph.D. thesis.

Du Bois B., Gorp P.V., Amsel A., Eetvelde N.V., Stenten
H., Demeyer S. 2004. A discussion of refactoring in
research and practice. Tech. rep.

Fontana F.A., Spinelli S. 2011. Impact of refactoring on
quality code evaluation. In: Proceedings of the 4th
Workshop on Refactoring Tools. pp. 37-40. WRT '11,
ACM.

Konstantinos Stroggyloset al. 2007.Refactoring: does it
improve software quality? In Proceedings of the 5th
Workshop on Software Quality (WoSQ '07), colocated
with the 29th International Conference on Software
Engineering (ICSE '07).

M. M. Lehman. 1996. Laws of software evolution
revisited. In 5th European Workshop on Software Process
Technology (EWSPT’96), volume 1149/1996 of LNCS,
pp. 108-124. Springer.

Lorin Hochstein and Mikael Lindvall. 2005. Combating
architectural degeneration: a survey. Inf. Softw. Technol.
47:643-656.

Nicolas Anquetil, Simon Denier, Stéphane Ducasse,
Jannik Laval, Damien Pollet, Roland Ducournau,
Rodolphe Giroudeau, Marianne Huchard, JeanClaude
König and Abdelhak Djamel Seriai. 2010. Software
(re)modularization: Fight against the structure erosion and
migration preparation.

M. Leppanen, S. Makinen, S. Lahtinen, O. Sievi-Korte,
A.-P. Tuovinen and T. Mannisto. 2015. Refactoring-a shot
in the dark? Software, IEEE. 32(6):62-70.

T. Sharma, G. Suryanarayana, and G. Samarthyam. 2015.
Challenges to and solutions for refactoring adoption: An
industrial perspective. Software, IEEE. 32(6):44-51.

Gustavo Soares. 2012. Automated behavioral testing of
refactoring engines. In Proceedings of the 3rd Annual
Conference on Systems, Programming, and Applications:
Software for Humanity, SPLASH ’12: 105-106, New
York, NY, USA. ACM.

J. Brant and F. Steimann. 2015. Refactoring tools are
trustworthy enough and trust must be earned. Software,
IEEE. 32(6):80-83.

A. Garrido and J. Meseguer. 2006. Formal Specification
and Verification of Java Refactorings. Proceedings of the
Sixth IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM’06). 00: 165-174.

A. Junior, L. Silva, and M. Corn´elio. 2007. Using
CafeOBJ to Mechanise Refactoring Proofs and
Application. Electronic Notes in Theoretical Computer
Science. 184:39-61.

K. Okuma and Y. Minamide. 2003. Executing Verified
Compiler Specification. Programming Languages and
Systems: First Asian Symposium, APLAS 2003, Beijing,
China. Proceedings.

X. Leroy. 2006. Formal certification of a compiler back-
end or: programming a compiler with a proof assistant.
ACM SIGPLAN Notices. 41(1):42-54.

S. Blazy, Z. Dargaye, and X. Leroy. 2006. Formal
Verification of a C Compiler Front-end. Symp. on Formal
Methods. pp. 460-475.

Tom Tourw´e and Tom Mens. 2003. Identifying
refactoring opportunities using logic Meta programming.
European Conference on Software Maintenance and
Reengineering, 0:91 100. doi: 10.1109/CSMR.2003.
1192416.

S. Demeyer. 2005. Refactor conditionals into
polymorphism: what’s the performance cost of introducing
virtual calls? in Proceedings of the 21st IEEE International
Conference on Software Maintenance, 2005. ICSM’05.
IEEE. pp. 627-630.

Du Bois B. 2004. A Study of Quality Improvements by
Refactoring. Ph.D. thesis (2006) Du Bois, B., Gorp, P.V.,
Amsel, A., Eetvelde, N.V., Stenten, H., Demeyer, S.: A
discussion of refactoring in research and practice. Tech.
rep.

