REMOVAL OF PHENOL FROM WATER BY ADVANCE OXIDATION PROCESS USING PLASMA SYSTEM

Reni Desmiarti¹, Munas Martynis¹ and Ariadi Hazmi²
¹Department of Chemical Engineering, Universitas Bung Hatta, Padang, Indonesia
²Department of Electrical Engineering, Universitas Andalas, Padang, Indonesia
E-Mail: renidesmiarti@gmail.com

ABSTRACT
The objective of this study is to evaluate the degradation of phenol in water using advance oxidation process by plasma system. Source of water was collected from Kuranji River in Padang City, West Sumatra, Indonesia. The experiments were carried out to see the effect of flow rate on first order reaction of phenol, removal efficiency and energy efficiency. The results shown that the first order reaction and removal efficiency are decreases with increasing of flow rate. The energy efficiency \(G_{\text{phenol}} \) decreases from 2.98 to 1.98 \(\mu \text{mol/Joule} \) as flow rate increases from 30 to 100 mL/minute. These results found that the flow rate is important parameter to control the degradation of phenol in water using plasma system.

Keywords: phenol, advance oxidation process, water treatment, degradation.

INTRODUCTION
Phenol is hazardous and poisonous material to organisms even at low concentration. The main sources of phenol in water environment are effluent of wastewater treatment plant (WWTP) from textile, petrochemicals, pesticides, biomass gasification and pharmaceuticals industries. This waste water has 2-3% phenol, 3-6% acetone and 2-4% sodium salts such as format and sulphate [1]. Phenol has high solubility in water and easy to discharge into water environment. The effluent standard of phenol by Environmental Protection Agencies (EPA) is 1 mg/L and in drinking water is 0.005 mg/L. Phenol is not effective to treat with conventional biological processes because poor biodegrability. To environmental protection, the removal of phenol from wastewater is very important. The removal of phenol has been studied by adsorption [2,3,4,5]. However, the regeneration process of adsorbent is very complicated. Alternative processes to remove phenol from wastewater and water using advanced oxidation processes (AOPs) [6,7,8]. AOPs are environmentally kindly technologies without hazardous chemical. These aim of these researches to increase the removal efficiency, minimize energy consumption and by-product formation. Radio frequency has potential to generate species and molecules radicals such as \(\cdot \text{H}, \cdot \text{OH}, \text{H}_2\text{O}_2 \) and \(\text{O}_3 \). Hydroxyl radical has the highest an oxidation potential of 2.8 V. Their ability to eliminate the phenol has been studied in batch process using glow discharge plasma [6] and radio frequency [7]. The objective of this study was to investigate the degradation of phenol with radio frequency plasma system to see the effects of flow rate.

MATERIALS AND METHODS

Source of water
Water sample was collected from Kuranji River in Padang city, Indonesia. Sampling sites is at coordinates S00°54'20.0 "E100°22'28.8". The water quality is shown in Table-1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>mg/L</td>
<td>66.4</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/L</td>
<td>0.07</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/L</td>
<td>0.21</td>
</tr>
<tr>
<td>Nitrate</td>
<td>mg/L</td>
<td><1</td>
</tr>
<tr>
<td>Nitrite</td>
<td>mg/L</td>
<td><0.01</td>
</tr>
<tr>
<td>Phenol</td>
<td>mg/L</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Experiments
Reactor was made of glass (thickness of 2 mm and length of 30 cm). The reactor wrapped with copper wire (diameter of 1 mm). Detail of experimental set up could be seen in Desmiarti et al [9]. The experiments were studied the effect of flow rate on degradation kinetic of phenol at applied frequency of 3.0 MHz. The flow rate was set at 30, 50 and 100 mL/minute and well controlled using peristaltic pump. DC voltage of 220V was applied to start experiments. Phenol was analyzed by UV-2100 UV-Visible Spectrometer.

RESULTS AND DISCUSSIONS

Degradation kinetic of phenol
In order to calculate the degradation kinetic of phenol was assumed to be first order reaction as described below:

\[
\frac{dC}{dt} = -kC
\]
Where C is the concentration of phenol (mg/L), k is the degradation kinetic constant (1/h) and t is time (h). The k was calculated by plotting of ln C/C₀ vs t as following equation (2).

$$ \ln \frac{C}{C_0} = kt $$ \hspace{1cm} (2)

The removal efficiency of phenol was calculated using following equation (3).

$$ \text{Removal Efficiency} (\%) = \frac{C_0 - C}{C_0} \times 100 $$ \hspace{1cm} (3)

As shown in Figure-1, the correlation coefficients (R^2) are 0.75 ~ 0.96. The k values can be calculated from the slopes are 0.38, 0.29 and 0.17 for flow rate 30, 50 and 100 mL/minute, respectively. These results suggesting that the flow rate is controlling the degradation of phenol in plasma system. Further research is important to study the other parameters such as applied frequency, diameter reactor and the mechanism reaction of phenol.

Figure-1. Effect of flow rate on the first order reaction of phenol.

Removal efficiency of phenol for running at 60 minutes was decreased to 33, 24 and 13% for flow rate at 30, 50 and 100 mL/minute, respectively. The comparisons of removal efficiency of phenol with previous studies are displayed in Table 2. These results are almost the same with adsorption process using graphene oxide from 12-40% [3] but lower than by activated carbon [4, 5]. The results obtained in this study indicate that combination of plasma system with other process is necessary to increase removal efficiency of organic matter in water [10]. Jiang et al [10] have been studied the degradation of organic dye using combination of pulsed discharge non-thermal plasma technology with activated carbon fiber (ACF). They found that modified of ACF could be increased the removal efficiency of methyl orange dye and chemical oxygen demand more than 90% due to larger adsorption capacity.

Table-2. Comparison removal of phenol with previous studies.

<table>
<thead>
<tr>
<th>Process</th>
<th>Removal efficiency (%)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glow Discharge Plasma in Batch Process</td>
<td>32-60</td>
<td>[6]</td>
</tr>
<tr>
<td>Radio frequency plasma system in batch process</td>
<td>62-79</td>
<td>[9]</td>
</tr>
<tr>
<td>Adsorption using graphene oxide/polypyrode composites</td>
<td>12-40</td>
<td>[3]</td>
</tr>
<tr>
<td>Adsorption on thermal modified activated carbon</td>
<td>80-90</td>
<td>[4]</td>
</tr>
<tr>
<td>Adsorption using activated carbon impregnated with iron oxide (Al₂O₃), aluminum oxide (Fe₂O₃) and titanium oxide (TiO₂).</td>
<td>AC–Al₂O₃ : 93.1
AC–Fe₂O₃ : 90.5
AC–TiO₂ : 89.5
ACs : 74.4</td>
<td>[5]</td>
</tr>
<tr>
<td>Radio frequency plasma system</td>
<td>13-33</td>
<td>This study</td>
</tr>
</tbody>
</table>
Energy efficiency

Energy efficiency is an essential parameter before application. The energy efficiency for phenol degradation [6,11,12] could be defined as follows:

$$G_{phenol} = \frac{(1/2)C_0Vol}{Pt_{1/2}}$$ \hspace{1cm} (4)

where C_0 is the initial phenol concentration, Vol is the volume of water, $t_{1/2}$ is the time for half of phenol removal, P is the electrical power. The values of G_{phenol} are shown in Figure-2. The G_{phenol} decreases with the increase of flow rate. The G_{phenol} decreases from 2.98 to 1.98 μmol/Joule as flow rate increases from 30 to 100 mL/minute. The decreased phenomena could be described by hydroxyl species production following reaction below [6]. To degrade phenol, hydroxyl radicals are the key species active.

$$C_6H_5OH + 2\cdot OH \rightarrow C_6H_4(OH)2 + H_2O \hspace{1cm} (5)$$

$$\cdot OH + \cdot OH \rightarrow H_2O_2 \hspace{1cm} (6)$$

The results in the present study is lower than degradation phenol using glow discharge plasma due to higher initial concentration of phenol [6].

![Figure-2. Effect of flow rate on energy efficiency (voltage; 220 V, current; 0.9A; applied frequency; 3 MHz).](image)

CONCLUSIONS

The degradation of phenol in water using radio frequency plasma system was examined. The experimental was studied to see the effect of flow rate on degradation rate, removal efficiency and energy efficiency. The degradation was assumed to be first order reaction. The values of R^2 obtained were 0.76-0.96, suggesting that the degradation process following the second order reaction. The first order reaction of phenol increases with decreasing of flow rate. The removal efficiency was 13-33% and energy efficiency was 2.98 to 1.98 μmol/Joule as flow rate increases from 30 to 100 mL/minute. Finally, the experiments indicated that radio frequency plasma system could be used for removal of phenol in water.

ACKNOWLEDGEMENTS

This study was supported by the Ministry of Research Technology and Higher Education Republic of Indonesia (RISTEK DIKTI) in DIPA Kopertis X 2016 No. SP DIPA-042.06.1.401516/2016.

REFERENCES

